内容
- TensorFlow Hub にある Faster_RCNN と SSD のモジュール(学習済みモデル+パラメータ)の使い方
レファレンス
TensorFlow Hub is a library for reusable machine learning modules.
faster_rcnn/openimages_v4/inception_resnet_v2
openimages_v4/ssd/mobilenet_v2
TensorFlow Hub のインポート
import tensorflow as tf
import tensorflow_hub as hub
モジュールの選択
- FasterRCNN+InceptionResNet V2: high accuracy
- ssd+mobilenet V2: small and fast
detector = hub.Module("https://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1")
# detector = hub.Module("https://tfhub.dev/google/openimages_v4/ssd/mobilenet_v2/1")
画像データの取り込みと変換
テンソルの形と値に注意。
Inputs
A three-channel image of variable size - the model does NOT support batching. The input tensor is a tf.float32 tensor with shape [1, height, width, 3] with values in [0.0, 1.0].
import cv2
path = '../'
file = 'xxx.jpg'
im_bgr = cv2.imread(path+file)
im = cv2.cvtColor(im_bgr, cv2.COLOR_BGR2RGB)
image_original = im.copy()
image_np = im.copy() / 255.0
image_tensor = tf.convert_to_tensor(np.expand_dims(image_np, axis=0), dtype=tf.float32)
推測
実行するために必要なコードは実質この5行。
detector_output = detector(image_tensor, as_dict=True)
init_ops = [tf.global_variables_initializer(), tf.tables_initializer()]
with tf.Session() as sess:
sess.run(init_ops)
result_out = sess.run(detector_output)
結果
作図するための関数。
def draw_bounding_box_on_image(image,
ymin,
xmin,
ymax,
xmax,
color,
font,
thickness=2,
display_str_list=()):
"""Adds a bounding box to an image."""
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
(left, top)],
width=thickness,
fill=color)
# If the total height of the display strings added to the top of the bounding
# box exceeds the top of the image, stack the strings below the bounding box
# instead of above.
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
# Each display_str has a top and bottom margin of 0.05x.
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
if top > total_display_str_height:
text_bottom = top
else:
text_bottom = bottom + total_display_str_height
# Reverse list and print from bottom to top.
for display_str in display_str_list[::-1]:
text_width, text_height = font.getsize(display_str)
margin = np.ceil(0.05 * text_height)
draw.rectangle([(left, text_bottom - text_height - 2 * margin),
(left + text_width, text_bottom)],
fill=color)
draw.text((left + margin, text_bottom - text_height - margin),
display_str,
fill="black",
font=font)
text_bottom -= text_height - 2 * margin
def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.1):
"""Overlay labeled boxes on an image with formatted scores and label names."""
colors = list(ImageColor.colormap.values())
#try:
# font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Regular.ttf", 25)
#except IOError:
# print("Font not found, using default font.")
# font = ImageFont.load_default()
font = ImageFont.load_default()
for i in range(min(boxes.shape[0], max_boxes)):
if scores[i] >= min_score:
ymin, xmin, ymax, xmax = tuple(boxes[i].tolist())
display_str = "{}: {}%".format(class_names[i].decode("ascii"),
int(100 * scores[i]))
color = colors[hash(class_names[i]) % len(colors)]
image_pil = Image.fromarray(np.uint8(image)).convert("RGB")
draw_bounding_box_on_image(
image_pil,
ymin,
xmin,
ymax,
xmax,
color,
font,
display_str_list=[display_str])
np.copyto(image, np.array(image_pil))
return image
作図。
boxes = result_out['detection_boxes']
class_entities = result_out['detection_class_entities']
class_names = result_out['detection_class_names']
class_labels = result_out['detection_class_labels']
scores = result_out['detection_scores']
print ("Found %d objects." % len(scores))
image_with_boxes = draw_boxes2(im, boxes, class_entities, scores)
print ('shape: ', image_with_boxes.shape)
fig = plt.figure(figsize = (15, 10))
ax1 = fig.add_subplot(1, 2, 1)
ax1.imshow(image_original)
ax1.set_xticks([])
ax1.set_yticks([])
ax1.set_title('Original')
ax2 = fig.add_subplot(1, 2, 2)
ax2.imshow(image_with_boxes)
ax2.set_xticks([])
ax2.set_yticks([])
ax2.set_title('With boxes')
plt.show()