9
11

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Rのデータフレームの集計についてのメモ

Last updated at Posted at 2021-03-07

はじめに

Rのデータフレームの集計の仕方について、サンプルデータを用いて具体的に練習してみました。

目次

Rのデータフレームの集計操作

Rのデータフレームの集計について、サンプルデータを用いて具体的に練習します。
Rのパッケージdplyr, tidyrを使います。
Rの標準パッケージを使ったデータフレーム操作については、こちら

なお、以下については別記事でまとめています。

dplyr
tidyr

参考:
https://r4ds.had.co.nz/transform.html
https://github.com/tidyverse/dplyr
https://heavywatal.github.io/rstats/dplyr.html

練習に用いるデータ

Rのサンプルデータirisanscombeを用います。
行番号を表示した方が分かりやすいため、tibble::rowid_to_column()で行番号を列名にしています。
こちらの記事と同じデータを用います。)

R
library(dplyr)
library(tibble)
library(tidyr)

iris

# 行番号を列名に
iris_tbl <- iris %>% as_tibble() %>% rowid_to_column("id")
iris_tbl
# # A tibble: 150 x 6
#       id Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#    <int>        <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#  1     1          5.1         3.5          1.4         0.2 setosa 
#  2     2          4.9         3            1.4         0.2 setosa 
#  3     3          4.7         3.2          1.3         0.2 setosa 
#  4     4          4.6         3.1          1.5         0.2 setosa 
#  5     5          5           3.6          1.4         0.2 setosa 
#  6     6          5.4         3.9          1.7         0.4 setosa 
#  7     7          4.6         3.4          1.4         0.3 setosa 
#  8     8          5           3.4          1.5         0.2 setosa 
#  9     9          4.4         2.9          1.4         0.2 setosa 
# 10    10          4.9         3.1          1.5         0.1 setosa 
# # ... with 140 more rows

anscombe

anscombe_tbl <- anscombe %>% as_tibble() %>% rowid_to_column("id")
anscombe_tbl
# # A tibble: 11 x 9
#       id    x1    x2    x3    x4    y1    y2    y3    y4
#    <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#  1     1    10    10    10     8  8.04  9.14  7.46  6.58
#  2     2     8     8     8     8  6.95  8.14  6.77  5.76
#  3     3    13    13    13     8  7.58  8.74 12.7   7.71
#  4     4     9     9     9     8  8.81  8.77  7.11  8.84
#  5     5    11    11    11     8  8.33  9.26  7.81  8.47
#  6     6    14    14    14     8  9.96  8.1   8.84  7.04
#  7     7     6     6     6     8  7.24  6.13  6.08  5.25
#  8     8     4     4     4    19  4.26  3.1   5.39 12.5 
#  9     9    12    12    12     8 10.8   9.13  8.15  5.56
# 10    10     7     7     7     8  4.82  7.26  6.42  7.91
# 11    11     5     5     5     8  5.68  4.74  5.73  6.89

tally():カウント集計

行をカウント集計します。

R
# tally()
iris_tbl %>%
  tally()
# # A tibble: 1 x 1
#       n
#   <int>
# 1   150

iris_tbl %>%
  group_by(Species) %>%
  tally()
# # A tibble: 3 x 2
#   Species        n
#   <fct>      <int>
# 1 setosa        50
# 2 versicolor    50
# 3 virginica     50

count():グループ別カウント集計

グループ別にカウント集計します。

R
# count()
iris_tbl %>%
  count()
# # A tibble: 1 x 1
#       n
#   <int>
# 1   150
# これと同じ
iris_tbl %>%
  tally()

iris_tbl %>%
  count(Species)
# # A tibble: 3 x 2
#   Species        n
#   <fct>      <int>
# 1 setosa        50
# 2 versicolor    50
# 3 virginica     50
# これと同じ
iris_tbl %>%
  group_by(Species) %>%
  tally()

引数nameを指定すると、カウントした結果の列名を変更できます(デフォルトの列名は"n")。

R
# 引数name
iris_tbl %>%
  count(name = "count")
# # A tibble: 1 x 1
#   count
#   <int>
# 1   150

iris_tbl %>%
  count(Species, name = "count")
# # A tibble: 3 x 2
#   Species    count
#   <fct>      <int>
# 1 setosa        50
# 2 versicolor    50
# 3 virginica     50

summarise():基本統計量の集計

基本統計量を集計します。

R
# summarise()
iris_tbl %>%
  summarise(n = n(), max = max(Sepal.Length), min = min(Sepal.Length))
# # A tibble: 1 x 3
#       n   max   min
#   <int> <dbl> <dbl>
# 1   150   7.9   4.3

iris_tbl %>%
  summarise(count = n(),
            mean(Sepal.Length), mean(Sepal.Width),
            mean(Petal.Length), mean(Petal.Width))
# # A tibble: 1 x 5
#   count `mean(Sepal.Length)` `mean(Sepal.Width)` `mean(Petal.Length)` `mean(Petal.Width)`
#   <int>                <dbl>               <dbl>                <dbl>               <dbl>
# 1   150                 5.84                3.06                 3.76                1.20

iris_tbl %>%
  summarise(count = n(),
            mean_sl = mean(Sepal.Length), mean_sw = mean(Sepal.Width),
            mean_pl = mean(Petal.Length), mean_pw = mean(Petal.Width))
# # A tibble: 1 x 5
#   count mean_sl mean_sw mean_pl mean_pw
#   <int>   <dbl>   <dbl>   <dbl>   <dbl>
# 1   150    5.84    3.06    3.76    1.20

iris_tbl %>%
  group_by(Species) %>%
  summarise(count = n(),
            mean_sl = mean(Sepal.Length), mean_sw = mean(Sepal.Width),
            mean_pl = mean(Petal.Length), mean_pw = mean(Petal.Width))
# # A tibble: 3 x 6
#   Species    count mean_sl mean_sw mean_pl mean_pw
#   <fct>      <int>   <dbl>   <dbl>   <dbl>   <dbl>
# 1 setosa        50    5.01    3.43    1.46   0.246
# 2 versicolor    50    5.94    2.77    4.26   1.33 
# 3 virginica     50    6.59    2.97    5.55   2.03 

iris_tbl %>%
  group_by(Species) %>%
  summarise(n = n(),                               # count
            n_distinct = n_distinct(Sepal.Length), # length(unique(x))
            mean = mean(Sepal.Length),             # mean
            median = median(Sepal.Length),         # median
            sd = sd(Sepal.Length),                 # SD (standard deviation)
            IQR = IQR(Sepal.Length),               # IQR (interquartile range)
            mad = mad(Sepal.Length),               # MAD (median absolute deviation)
            min = min(Sepal.Length),               # min
            max = max(Sepal.Length),               # max
            Q1 = quantile(Sepal.Length, 0.25),     # quantile
            Q3 = quantile(Sepal.Length, 0.75),     # quantile
            sum = sum(Sepal.Length),               # sum
            prod = prod(Sepal.Length))             # prod
# # A tibble: 3 x 14
#   Species        n n_distinct  mean median    sd   IQR   mad   min   max    Q1    Q3   sum    prod
#   <fct>      <int>      <int> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>
# 1 setosa        50         15  5.01    5   0.352 0.4   0.297   4.3   5.8  4.8    5.2  250. 8.35e34
# 2 versicolor    50         21  5.94    5.9 0.516 0.7   0.519   4.9   7    5.6    6.3  297. 3.93e38
# 3 virginica     50         21  6.59    6.5 0.636 0.675 0.593   4.9   7.9  6.22   6.9  329. 6.88e40

iris_tbl %>%
  group_by(Species) %>%
  summarise(first      = first(Sepal.Length),       # 先頭
            last       = last(Sepal.Length),        # 末尾
            nth_1      = nth(Sepal.Length, n = 1),  # 1番目
            nth_2      = nth(Sepal.Length, n = 2),  # 2番目
            nth_3      = nth(Sepal.Length, n = 3),  # 3番目
            nth_last_3 = nth(Sepal.Length, n = -3), # 後ろから3番目
            nth_last_2 = nth(Sepal.Length, n = -2), # 後ろから2番目
            nth_last_1 = nth(Sepal.Length, n = -1)) # 後ろから1番目
# # A tibble: 3 x 9
#   Species    first  last nth_1 nth_2 nth_3 nth_last_3 nth_last_2 nth_last_1
#   <fct>      <dbl> <dbl> <dbl> <dbl> <dbl>      <dbl>      <dbl>      <dbl>
# 1 setosa       5.1   5     5.1   4.9   4.7        4.6        5.3        5  
# 2 versicolor   7     5.7   7     6.4   6.9        6.2        5.1        5.7
# 3 virginica    6.3   5.9   6.3   5.8   7.1        6.5        6.2        5.9

なお、統計量を集計する関数の結果が長さ1でない場合でも使えます。

R
iris_tbl %>%
  summarise(range(Sepal.Length), range(Sepal.Width))
# # A tibble: 2 x 2
#   `range(Sepal.Length)` `range(Sepal.Width)`
#                   <dbl>                <dbl>
# 1                   4.3                  2  
# 2                   7.9                  4.4

iris_tbl %>%
  summarise(n = n(), range_sl = range(Sepal.Length), range_sw = range(Sepal.Width))
# # A tibble: 2 x 3
#       n range_sl range_sw
#   <int>    <dbl>    <dbl>
# 1   150      4.3      2  
# 2   150      7.9      4.4

iris_tbl %>%
  summarise(n = n(),
            max = max(Sepal.Length),
            min = min(Sepal.Length),
            range = range(Sepal.Length))
# # A tibble: 2 x 4
#       n   max   min range
#   <int> <dbl> <dbl> <dbl>
# 1   150   7.9   4.3   4.3
# 2   150   7.9   4.3   7.9

summarise(across()):複数列にわたる集計

acrossを使うと、複数の列にわたって同じ統計量を計算する関数を適用して集計できます。

R
# summarise(across())
iris_tbl %>%
  group_by(Species) %>%
  summarise(across(Sepal.Length:Petal.Width, mean))
# # A tibble: 3 x 5
#   Species    Sepal.Length Sepal.Width Petal.Length Petal.Width
#   <fct>             <dbl>       <dbl>        <dbl>       <dbl>
# 1 setosa             5.01        3.43         1.46       0.246
# 2 versicolor         5.94        2.77         4.26       1.33 
# 3 virginica          6.59        2.97         5.55       2.03 

iris_tbl %>%
  group_by(Species) %>%
  summarise(across(Sepal.Length:Petal.Width, ~ mean(.) * 50))
iris_tbl %>%
  group_by(Species) %>%
  summarise(across(Sepal.Length:Petal.Width, ~ mean(.x) * 50))
# A tibble: 3 x 5
#   Species    Sepal.Length Sepal.Width Petal.Length Petal.Width
#   <fct>             <dbl>       <dbl>        <dbl>       <dbl>
# 1 setosa             250.        171.         73.1        12.3
# 2 versicolor         297.        138.        213          66.3
# 3 virginica          329.        149.        278.        101. 
# これと同じ結果になる
iris_tbl %>%
  group_by(Species) %>%
  summarise(across(Sepal.Length:Petal.Width, sum))

where()

across()に渡す列の指定にwhere()で条件を指定できます。

R
# where()
iris_tbl %>%
  group_by(Species) %>%
  summarise(across(where(is.numeric), mean))
# # A tibble: 3 x 6
#   Species       id Sepal.Length Sepal.Width Petal.Length Petal.Width
#   <fct>      <dbl>        <dbl>       <dbl>        <dbl>       <dbl>
# 1 setosa      25.5         5.01        3.43         1.46       0.246
# 2 versicolor  75.5         5.94        2.77         4.26       1.33 
# 3 virginica  126.          6.59        2.97         5.55       2.03 

iris_tbl %>%
  group_by(Species) %>%
  summarise(across(where(is.double), mean))
# # A tibble: 3 x 5
#   Species    Sepal.Length Sepal.Width Petal.Length Petal.Width
#   <fct>             <dbl>       <dbl>        <dbl>       <dbl>
# 1 setosa             5.01        3.43         1.46       0.246
# 2 versicolor         5.94        2.77         4.26       1.33 
# 3 virginica          6.59        2.97         5.55       2.03 

iris_tbl %>%
  group_by(Species) %>%
  summarise(across(where(is.integer), mean))
# # A tibble: 3 x 2
#   Species       id
#   <fct>      <dbl>
# 1 setosa      25.5
# 2 versicolor  75.5
# 3 virginica  126. 

anscombe_tbl %>%
  summarise(across(where(is.double), mean))
# # A tibble: 1 x 8
#      x1    x2    x3    x4    y1    y2    y3    y4
#   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1    9     9     9     9  7.50  7.50   7.5  7.50

引数.fns:複数の集計関数

acrossした場合にも統計量を計算する関数を複数リストで与えることができます。

R
# 引数.fns
iris_tbl %>%
  group_by(Species) %>%
  summarise(across(starts_with("Sepal"),
                   .fns = list(mean, sd)))
# # A tibble: 3 x 5
#   Species    Sepal.Length_1 Sepal.Length_2 Sepal.Width_1 Sepal.Width_2
#   <fct>               <dbl>          <dbl>         <dbl>         <dbl>
# 1 setosa               5.01          0.352          3.43         0.379
# 2 versicolor           5.94          0.516          2.77         0.314
# 3 virginica            6.59          0.636          2.97         0.322

anscombe_tbl %>%
  summarise(across(x1:y4, .fns = list(mean, sd)))
# # A tibble: 1 x 16
#    x1_1  x1_2  x2_1  x2_2  x3_1  x3_2  x4_1  x4_2  y1_1  y1_2  y2_1  y2_2  y3_1  y3_2  y4_1  y4_2
#   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1     9  3.32     9  3.32     9  3.32     9  3.32  7.50  2.03  7.50  2.03   7.5  2.03  7.50  2.03

引数.names:出力列名指定

出力結果の列名を引数.namesで指定できます。

R
# 引数.names
iris_tbl %>%
  group_by(Species) %>%
  summarise(across(Sepal.Length:Petal.Width,
                   .fns = mean, .names = "mean_{col}"))
# # A tibble: 3 x 5
#   Species    mean_Sepal.Length mean_Sepal.Width mean_Petal.Length mean_Petal.Width
#   <fct>                  <dbl>            <dbl>             <dbl>            <dbl>
# 1 setosa                  5.01             3.43              1.46            0.246
# 2 versicolor              5.94             2.77              4.26            1.33 
# 3 virginica               6.59             2.97              5.55            2.03 

iris_tbl %>%
  group_by(Species) %>%
  summarise(across(starts_with("Sepal"),
                   .fns = list(Mean = mean, SD = sd),
                   .names = "{fn}_{col}"))
# # A tibble: 3 x 5
#   Species    Mean_Sepal.Length SD_Sepal.Length Mean_Sepal.Width SD_Sepal.Width
#   <fct>                  <dbl>           <dbl>            <dbl>          <dbl>
# 1 setosa                  5.01           0.352             3.43          0.379
# 2 versicolor              5.94           0.516             2.77          0.314
# 3 virginica               6.59           0.636             2.97          0.322

iris_tbl %>%
  group_by(Species) %>%
  summarise(across(starts_with("Sepal"),
                   .fns = list(Mean = mean, SD = sd),
                   .names = "{fn}({col})"))
# # A tibble: 3 x 5
#   Species    `Mean(Sepal.Length)` `SD(Sepal.Length)` `Mean(Sepal.Width)` `SD(Sepal.Width)`
#   <fct>                     <dbl>              <dbl>               <dbl>             <dbl>
# 1 setosa                     5.01              0.352                3.43             0.379
# 2 versicolor                 5.94              0.516                2.77             0.314
# 3 virginica                  6.59              0.636                2.97             0.322

iris_tbl %>%
  group_by(Species) %>%
  summarise(across(starts_with("Sepal"),
                   .fns = list(mean, sd),
                   .names = "f{fn}_{col}"))
# # A tibble: 3 x 5
#   Species    f1_Sepal.Length f2_Sepal.Length f1_Sepal.Width f2_Sepal.Width
#   <fct>                <dbl>           <dbl>          <dbl>          <dbl>
# 1 setosa                5.01           0.352           3.43          0.379
# 2 versicolor            5.94           0.516           2.77          0.314
# 3 virginica             6.59           0.636           2.97          0.322

anscombe_tbl %>%
  summarise(across(x1:y4,
                   .fns = list(mean = mean, sd = sd),
                   .names = "{fn}_{col}"))
# # A tibble: 1 x 16
#   mean_x1 sd_x1 mean_x2 sd_x2 mean_x3 sd_x3 mean_x4 sd_x4 mean_y1 sd_y1 mean_y2 sd_y2 mean_y3 sd_y3 mean_y4 sd_y4
#     <dbl> <dbl>   <dbl> <dbl>   <dbl> <dbl>   <dbl> <dbl>   <dbl> <dbl>   <dbl> <dbl>   <dbl> <dbl>   <dbl> <dbl>
# 1       9  3.32       9  3.32       9  3.32       9  3.32    7.50  2.03    7.50  2.03     7.5  2.03    7.50  2.03

おまけ:pivotと組み合わせてsummary

tidyrpivot_longer(), pivot_wider()と組み合わせると、summary()関数のような結果が出力できます。

R
iris_tbl %>%
  summarise(across(Sepal.Length:Petal.Width,
                   .fns = list(mean = mean, sd = sd),
                   .names = "{fn}_{col}")) %>% print() %>%
  pivot_longer(cols = everything(),
               names_to = "name",
               values_to = "value") %>% print() %>%
  separate(name, c("stat", "var"), sep = "_") %>% print() %>%
  pivot_wider(names_from = var, values_from = value) %>% print() %>%
  column_to_rownames(var = "stat")
#      Sepal.Length Sepal.Width Petal.Length Petal.Width
# mean    5.8433333   3.0573333     3.758000   1.1993333
# sd      0.8280661   0.4358663     1.765298   0.7622377

anscombe_tbl %>%
  summarise(across(x1:y4,
                   .fns = list(mean = mean, sd = sd),
                   .names = "{fn}_{col}")) %>% print() %>%
  pivot_longer(cols = everything(),
               names_to = "name",
               values_to = "value") %>% print() %>%
  separate(name, c("stat", "var"), sep = "_") %>% print() %>%
  pivot_wider(names_from = var, values_from = value) %>% print() %>%
  column_to_rownames(var = "stat")
#            x1       x2       x3       x4       y1       y2       y3       y4
# mean 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
# sd   3.316625 3.316625 3.316625 3.316625 2.031568 2.031657 2.030424 2.030579

iris_tbl %>%
  group_by(Species) %>%
  summarise(across(Sepal.Length:Petal.Width,
                   list(mean = mean, sd = sd),
                   .names = "{fn}_{col}")) %>% print() %>%
  pivot_longer(-Species,
               names_to = "name", values_to = "value") %>% print() %>%
  separate(name, c("stat", "var"), sep = "_") %>% print() %>%
  pivot_wider(names_from = c(var), values_from = value)
# # A tibble: 6 x 6
#   Species    stat  Sepal.Length Sepal.Width Petal.Length Petal.Width
#   <fct>      <chr>        <dbl>       <dbl>        <dbl>       <dbl>
# 1 setosa     mean         5.01        3.43         1.46        0.246
# 2 setosa     sd           0.352       0.379        0.174       0.105
# 3 versicolor mean         5.94        2.77         4.26        1.33 
# 4 versicolor sd           0.516       0.314        0.470       0.198
# 5 virginica  mean         6.59        2.97         5.55        2.03 
# 6 virginica  sd           0.636       0.322        0.552       0.275

iris_tbl %>%
  summarise(across(Sepal.Length:Petal.Width,
                   .fns = list(Min    = min,
                               Q1     = ~ quantile(., 0.25),
                               Median = median,
                               Mean   = mean,
                               Q3     = ~ quantile(., 0.75),
                               Max    = max),
                   .names = "{fn}_{col}")) %>% print() %>%
  pivot_longer(cols = everything(),
               names_to = "name",
               values_to = "value") %>% print() %>%
  separate(name, c("stat", "var"), sep = "_") %>% print() %>%
  pivot_wider(names_from = c(var), values_from = value) %>%
  column_to_rownames(var = "stat")
#        Sepal.Length Sepal.Width Petal.Length Petal.Width
# Min        4.300000    2.000000        1.000    0.100000
# Q1         5.100000    2.800000        1.600    0.300000
# Median     5.800000    3.000000        4.350    1.300000
# Mean       5.843333    3.057333        3.758    1.199333
# Q3         6.400000    3.300000        5.100    1.800000
# Max        7.900000    4.400000        6.900    2.500000
# これと同じ結果に
summary(iris[1:4])
#  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
# Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
# 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
# Median :5.800   Median :3.000   Median :4.350   Median :1.300  
# Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
# 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
# Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  

anscombe_tbl %>%
  summarise(across(x1:y4,
                   .fns = list(Min    = min,
                               Q1     = ~ quantile(., 0.25),
                               Median = median,
                               Mean   = mean,
                               Q3     = ~ quantile(., 0.75),
                               Max    = max),
                   .names = "{fn}_{col}")) %>% print() %>%
  pivot_longer(cols = everything(),
               names_to = "name",
               values_to = "value") %>% print() %>%
  separate(name, c("stat", "var"), sep = "_") %>% print() %>%
  pivot_wider(names_from = c(var), values_from = value) %>%
  column_to_rownames(var = "stat")
#          x1   x2   x3 x4        y1       y2    y3        y4
# Min     4.0  4.0  4.0  8  4.260000 3.100000  5.39  5.250000
# Q1      6.5  6.5  6.5  8  6.315000 6.695000  6.25  6.170000
# Median  9.0  9.0  9.0  8  7.580000 8.140000  7.11  7.040000
# Mean    9.0  9.0  9.0  9  7.500909 7.500909  7.50  7.500909
# Q3     11.5 11.5 11.5  8  8.570000 8.950000  7.98  8.190000
# Max    14.0 14.0 14.0 19 10.840000 9.260000 12.74 12.500000
# これと同じ結果に
summary(anscombe)
#       x1             x2             x3             x4           y1               y2              y3              y4        
# Min.   : 4.0   Min.   : 4.0   Min.   : 4.0   Min.   : 8   Min.   : 4.260   Min.   :3.100   Min.   : 5.39   Min.   : 5.250  
# 1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 6.5   1st Qu.: 8   1st Qu.: 6.315   1st Qu.:6.695   1st Qu.: 6.25   1st Qu.: 6.170  
# Median : 9.0   Median : 9.0   Median : 9.0   Median : 8   Median : 7.580   Median :8.140   Median : 7.11   Median : 7.040  
# Mean   : 9.0   Mean   : 9.0   Mean   : 9.0   Mean   : 9   Mean   : 7.501   Mean   :7.501   Mean   : 7.50   Mean   : 7.501  
# 3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.:11.5   3rd Qu.: 8   3rd Qu.: 8.570   3rd Qu.:8.950   3rd Qu.: 7.98   3rd Qu.: 8.190  
# Max.   :14.0   Max.   :14.0   Max.   :14.0   Max.   :19   Max.   :10.840   Max.   :9.260   Max.   :12.74   Max.   :12.500

pivot_wider():ピボット集計

ピボット集計については、tidyrpivot_wider()関数(引数values_fnに集計関数を指定)で計算できます(こちら参照)。

まず、使用するデータを作成しておきます。

R
# データの準備
iris_long <- iris_tbl %>%
  pivot_longer(cols = -c(id, Species), names_to = c("part", "measure"), names_sep = "\\.", values_to = "value")
iris_long
# # A tibble: 600 x 5
#       id Species part  measure value
#    <int> <fct>   <chr> <chr>   <dbl>
#  1     1 setosa  Sepal Length    5.1
#  2     1 setosa  Sepal Width     3.5
#  3     1 setosa  Petal Length    1.4
#  4     1 setosa  Petal Width     0.2
#  5     2 setosa  Sepal Length    4.9
#  6     2 setosa  Sepal Width     3  
#  7     2 setosa  Petal Length    1.4
#  8     2 setosa  Petal Width     0.2
#  9     3 setosa  Sepal Length    4.7
# 10     3 setosa  Sepal Width     3.2
# # ... with 590 more rows

anscombe_long <- anscombe_tbl %>%
  pivot_longer(cols = -id, names_to = c("axis", "set"), names_sep = 1L, values_to = "value")
anscombe_long
# # A tibble: 88 x 4
#       id axis  set   value
#    <int> <chr> <chr> <dbl>
#  1     1 x     1     10   
#  2     1 x     2     10   
#  3     1 x     3     10   
#  4     1 x     4      8   
#  5     1 y     1      8.04
#  6     1 y     2      9.14
#  7     1 y     3      7.46
#  8     1 y     4      6.58
#  9     2 x     1      8   
# 10     2 x     2      8   
# # ... with 78 more rows

ピボット集計でカウント

R
# ピボット集計でカウント
iris_long %>%
  pivot_wider(id_cols = c(part, measure),
              names_from = Species, values_from = value,
              values_fn = list(value = length))
# # A tibble: 4 x 5
#   part  measure setosa versicolor virginica
#   <chr> <chr>    <int>      <int>     <int>
# 1 Sepal Length      50         50        50
# 2 Sepal Width       50         50        50
# 3 Petal Length      50         50        50
# 4 Petal Width       50         50        50

anscombe_long %>%
  pivot_wider(id_cols = set,
              names_from = axis, values_from = value,
              values_fn = list(value = length))
# # A tibble: 4 x 3
#   set       x     y
#   <chr> <int> <int>
# 1 1        11    11
# 2 2        11    11
# 3 3        11    11
# 4 4        11    11

ピボット集計で合計

R
# ピボット集計で合計
iris_long %>%
  pivot_wider(id_cols = c(part, measure),
              names_from = Species, values_from = value,
              values_fn = list(value = sum))
# # A tibble: 4 x 5
#   part  measure setosa versicolor virginica
#   <chr> <chr>    <dbl>      <dbl>     <dbl>
# 1 Sepal Length   250.       297.       329.
# 2 Sepal Width    171.       138.       149.
# 3 Petal Length    73.1      213        278.
# 4 Petal Width     12.3       66.3      101.

anscombe_long %>%
  pivot_wider(id_cols = set,
              names_from = axis, values_from = value,
              values_fn = list(value = sum))
# # A tibble: 4 x 3
#   set       x     y
#   <chr> <dbl> <dbl>
# 1 1        99  82.5
# 2 2        99  82.5
# 3 3        99  82.5
# 4 4        99  82.5

ピボット集計で平均

R
# ピボット集計で平均
iris_long %>%
  pivot_wider(id_cols = c(part, measure),
              names_from = Species, values_from = value,
              values_fn = list(value = mean))
# # A tibble: 4 x 5
#   part  measure setosa versicolor virginica
#   <chr> <chr>    <dbl>      <dbl>     <dbl>
# 1 Sepal Length   5.01        5.94      6.59
# 2 Sepal Width    3.43        2.77      2.97
# 3 Petal Length   1.46        4.26      5.55
# 4 Petal Width    0.246       1.33      2.03

anscombe_long %>%
  pivot_wider(id_cols = set,
              names_from = axis, values_from = value,
              values_fn = list(value = mean))
# # A tibble: 4 x 3
#   set       x     y
#   <chr> <dbl> <dbl>
# 1 1         9  7.50
# 2 2         9  7.50
# 3 3         9  7.5 
# 4 4         9  7.50

R標準パッケージによる集計操作

参考

9
11
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
9
11

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?