0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

交差確率と組換確率

Last updated at Posted at 2016-12-12

2つのマーカー間で平均1回交差(cross over)が起こる状況を考える。この状況において2つのマーカーについて組み換え(recombination)が起こる率は、2つのマーカー間での交差が奇数回起こることの合計になる。

ポアソン分布の確率密度関数は

P(X, \lambda) = \frac{\lambda^Xe^{-\lambda}}{X!}

なので、求める確率は

\begin{align}
P_{odd} &= \sum_{X=1,3,5 \cdots}P(X,\lambda)
\frac{\lambda^1e^{-\lambda}}{1!} + \frac{\lambda^3e^{-\lambda}}{3!} + \frac{\lambda^xe^{-\lambda}}{5!} \cdots  \\
&=e^{-\lambda}(\lambda+\frac{\lambda^3}{3!}+\frac{\lambda^5}{5!} \cdots)
\end{align}

ここで、$e^\lambda$と$e^{-\lambda}$のマクローリン展開より

\begin{align}
e^{\lambda} &= \frac{\lambda^0}{0!} + \frac{\lambda^1}{1!} + \frac{\lambda^2}{2!}+ \frac{\lambda^2}{3!}  \cdots\\
&= 1 + \lambda + \frac{\lambda^2}{2!}+ \frac{\lambda^3}{3!}  \cdots\\
\\
e^{-\lambda} &= \frac{(-\lambda)^0}{0!} + \frac{(-\lambda)^1}{1!} + \frac{(-\lambda)^2}{2!}+ \frac{(-\lambda)^2}{3!}  \cdots\\
&= 1 - \lambda + \frac{\lambda^2}{2!} - \frac{\lambda^3}{3!}  \cdots\\
\end{align}

差を取ると

$$
e^{\lambda} - e^{-\lambda} = 2\lambda + 2\frac{\lambda^3}{3!} + 2\frac{\lambda^5}{5!} \cdots\
$$

両辺2で割って$e^{-\lambda}$をかけて

$$
e^{-\lambda}\frac{e^{\lambda} - e^{-\lambda}}{2} = e^{-\lambda}(\lambda + \frac{\lambda^3}{3!} + \frac{\lambda^5}{5!}\cdots)\
$$

$$
P_{odd} = \frac{1-e^{-2\lambda}}{2}
$$

Rで計算すると

> oddPois <- function(x) (1-exp(-2*x))/2
> oddPois(1)
[1] 0.4323324
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?