0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

metaflowでパイプラインのデバッグ

Posted at

#Metaflow
Metaflow | https://metaflow.org/
スクリーンショット 2020-06-16 11.32.58.png

#パイプラインの実装

train.py

from metaflow import FlowSpec, step, Parameter

class TrainingPipeline(FlowSpec):
    param_config_str = Parameter('config',
                             help='Training config json str.',
                             default='{}')

    @step
    def start(self):
        self.config = json.loads(self.param_config_str)
        self.a = 0
        self.next(self.step1)

    @step
    def step1(self):
        self.a = 1
        self.next(self.step2)

    @step
    def step2(self):
        self.a = 2
        self.next(self.end)

   @step
    def end(self):
        pass

if __name__ == '__main__':
    TrainingPipeline()

###実行

python train.py

#デバッグ
実行すると、実行フォルダ内に「.metaflow」ディレクトリが生成されているのがわかります。
.metaflowディレクトリがある階層に以下のスクリプトを用意します。

debug.py
from metaflow import Flow, namespace, Step

namespace(None)
data_start = Step('TrainingPipeline/[RUN_ID]/start').task.data
print('Step start : a -> {}'.format(data_start.a))

data1 = Step('TrainingPipeline/[RUN_ID]/step1').task.data
print('Step step1 : a -> {}'.format(data1.a))

data2 = Step('TrainingPipeline/[RUN_ID]/step2').task.data
print('Step step2 : a -> {}'.format(data2.a))

###実行

python debug.py

###結果

Step start : a -> 0
Step step1 : a -> 1
Step step2 : a -> 2

ちなみにDataFrameなどもちゃんと保存しておけます。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?