10
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

ASEのMDモジュールで遊ぶ

Last updated at Posted at 2020-05-04

ASE (Atomic Simulation Environment) のase.mdモジュールを用いて,Ni結晶のMDシミュレーションをしてみます.

モデル

Ni (fcc) のバルクモデルを作成します.

import numpy as np
from ase.build import bulk
from ase.build.supercells import make_supercell
from ase.calculators.emt import EMT

# Niバルク
Ni_bulk= bulk('Ni', 'fcc', a=3.5, cubic=True) 

# 超格子
Ni_bulk = make_supercell(Ni_bulk, np.diag([3., 3., 3.]))

# EMTを用いる
Ni_bulk.set_calculator(EMT())

Ni_bulk.png

MDシミュレーションの設定

NVTシミュレーション (体積・温度一定) を行います.
はじめに系の温度を10Kに保ち,その後500Kに上げます.
また20ステップごとに温度の出力も行います.

from ase import units
from ase.md.nvtberendsen import NVTBerendsen
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution

dt = 2 * units.fs
temp0, nsteps0 = 10, 200
temp1, nsteps1 = 500, 400
taut = 20*units.fs
    
MaxwellBoltzmannDistribution(Ni_bulk, temp0*units.kB)
dyn = NVTBerendsen(Ni_bulk, dt, temp0, taut=taut, trajectory='md.traj')
def myprint():
    print(f'time={dyn.get_time() / units.fs: 5.0f} fs ' + \
          f'T={Ni_bulk.get_temperature(): 3.0f} K')
dyn.attach(myprint, interval=20)

MDシミュレーションを実行

dyn.run(nsteps0)

# 温度を上げる
dyn.set_temperature(temp1)
dyn.run(nsteps1)

結果を可視化する

温度・構造・動径分布関数 (RDF) の変化をmatplotlibを用いて可視化します.

%matplotlib widget 

import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from ase.visualize.plot import plot_atoms
from ase.io.trajectory import Trajectory
from ase.geometry.analysis import Analysis

traj =  Trajectory('md.traj')

fig, ax = plt.subplots(1, 3, figsize=(9,3), tight_layout=True)

t = np.arange(nsteps0+nsteps1+1) * dt
temp = [atoms.get_temperature() for atoms in traj]

nframes = 20

def update(iframe):
    idx = int((nsteps0+nsteps1)*iframe/nframes)
    
    ax[0].clear()
    ax[0].set_title('Temperature')
    ax[0].set_xlabel('time (fs)')
    ax[0].set_ylabel('T (K)')
    ax[0].plot(t, temp)
    ax[0].plot(t[idx], temp[idx], marker='X', markersize=10)
    
    ax[1].clear()
    ax[1].set_title('Structure')
    ax[1].axis('off')
    plot_atoms(traj[idx], ax=ax[1], rotation='45x,45y')
    
    distribution, distance = Analysis(traj[idx]).get_rdf(rmax=5., nbins=100, return_dists=True)[0]
    ax[2].clear()
    ax[2].set_title('RDF')
    ax[2].set_ylim((0,10))
    ax[2].set_xlabel('distance (A))')
    ax[2].set_ylabel('distribution')
    ax[2].plot(distance, distribution, color='darkblue')

ani = FuncAnimation(fig, update, np.arange(nframes), blit=True, interval=250.)
ani.save('ani.gif', writer="imagemagick")

anim_Ni.gif

参考

10
7
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
10
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?