$n$を法とする剰余類 $a$
$$
\mathbb{Z}/3\mathbb{Z} = \{ \bar{0}, \bar{1}, \bar{2} \} = \{ [0]_3, [1]_3, [2]_3, \}
$$
$$
$$
\bar{a} \ \ (mod \ \ n)
$$
$$
\bar{a} = \{ x \in \mathbb{Z} | x \equiv a \ (mod \ n) \}
$$
Go to list of users who liked
$n$を法とする剰余類 $a$
$$
\mathbb{Z}/3\mathbb{Z} = \{ \bar{0}, \bar{1}, \bar{2} \} = \{ [0]_3, [1]_3, [2]_3, \}
$$
$$
$$
\bar{a} \ \ (mod \ \ n)
$$
$$
\bar{a} = \{ x \in \mathbb{Z} | x \equiv a \ (mod \ n) \}
$$
Register as a new user and use Qiita more conveniently
Go to list of users who liked