1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

[Oracle ADS] 回帰と分類はどう決まるのか?

Posted at

Oracle Data Science Cloudで使用できる、adsについて。

結論

targetとして指定したSeriesの型がfloatであれば回帰。intであれば分類。

決定ロジック

パッケージの場所

adsパッケージのコードを見ていく。


import sys

sys.path

['/tmp/dask-worker-space/worker-_4k3q1mv',
 '/home/datascience/conda/mlcpuv1/lib/python36.zip',
 '/home/datascience/conda/mlcpuv1/lib/python3.6',
 '/home/datascience/conda/mlcpuv1/lib/python3.6/lib-dynload',
 '',
 '/home/datascience/conda/mlcpuv1/lib/python3.6/site-packages', <=ここ
 '/home/datascience/conda/mlcpuv1/lib/python3.6/site-packages/IPython/extensions',
 '/home/datascience/.ipython']

変数「ml_task_type」で決まる。

ads/automl/driver.py


def get_ml_task_type(X, y, classes):
    target_type = TypeDiscoveryDriver().discover(y.name, y)
    if isinstance(target_type, DiscreteTypedFeature):
        if len(classes) == 2:
            if helper.is_text_data(X):
                ml_task_type = utils.ml_task_types.BINARY_TEXT_CLASSIFICATION
            else:
                ml_task_type = utils.ml_task_types.BINARY_CLASSIFICATION
        else:
            if helper.is_text_data(X):
                ml_task_type = utils.ml_task_types.MULTI_CLASS_TEXT_CLASSIFICATION
            else:
                ml_task_type = utils.ml_task_types.MULTI_CLASS_CLASSIFICATION
    elif isinstance(target_type, ContinuousTypedFeature):
        ml_task_type = utils.ml_task_types.REGRESSION
    else:
        raise TypeError("AutoML for target type ({0}) is not yet available"
                                   .format(target_type.meta_data["type"]))
    return ml_task_type

TypeDiscoveryDriver().discover(y.name, y) の型で決まる

from ads.type_discovery.type_discovery_driver import TypeDiscoveryDriver

ads/automl/type_discovery/type_discovery_driver.py

class TypeDiscoveryDriver:

    #
    # takes a pandas series
    #
    def discover(self, name, s, is_target=False):
     :
     :

        if is_target and ContinuousDetector._target_is_continuous(s):
            return ContinuousTypedFeature.build(name, s)

ContinuousDetector._target_is_continuous(s) がTrueなら回帰

from ads.type_discovery.continuous_detector import ContinuousDetector

ads/automl/type_discovery/continuous_detector.py


class ContinuousDetector(AbstractTypeDiscoveryDetector):

    @staticmethod
    def _target_is_continuous(series):
        if str(series.dtype) in ['float16', 'float32', 'float64']:
            return True # treat target variable as continuous
        elif str(series.dtype) in ['int16', 'int32', 'int64']:
            if series.nunique() >= 20:
                return True # treat target variable as continuous

        return False
1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?