Why not login to Qiita and try out its useful features?

We'll deliver articles that match you.

You can read useful information later.

0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

#概要

jsdoでtensorflow.jsやってみた。
keras風、高級APIを使わないで、coreとか言われるレベルでやってみた。
xor問題、やってみた。

#写真

image.png

#サンプルコード

const xt = tf.tensor2d([[1, 0], [0, 1], [1, 1], [0, 0]], [4, 2]);
const yt = tf.tensor2d([[1, 0], [1, 0], [0, 1], [0, 1]], [4, 2]);

const w1 = tf.variable(tf.randomNormal([2, 6]));
const b1 = tf.variable(tf.zeros([6]));
const w2 = tf.variable(tf.randomNormal([6, 2]));
const b2 = tf.variable(tf.zeros([2]));

function func(x) {
	const h = tf.relu(x.matMul(w1).add(b1));
    return tf.softmax(h.matMul(w2).add(b2));
}

function loss(pred, label) {
	return tf.losses.softmaxCrossEntropy(pred, label).mean();
}

const optimizer = tf.train.sgd(0.1);

for (let i = 0; i < 3000; i++)
{
	const cost = optimizer.minimize(() => loss(func(xt), yt), true);
}

alert(func(xt));

#成果物

以上。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?