0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

manimの作法 その57

Posted at

概要

manimの作法、調べてみた。
ComplexPlane、使ってみた。

サンプルコード

from manimlib.imports import *

class test(Scene):
	CONFIG = {
		"axes_config": {
			"x_min": 0,
			"x_max": 10,
			"x_axis_config": {
				"stroke_width": 2,
			},
			"y_min": -2.5,
			"y_max": 2.5,
			"y_axis_config": {
				"tick_frequency": 0.25,
				"unit_size": 1.5,
				"include_tip": False,
				"stroke_width": 2,
			},
		},
		"complex_plane_config": {
			"axis_config": {
				"unit_size": 2
			}
		},
	}
	def construct(self):
		self.show_cosine_wave()
		self.transition_to_complex_plane()
		self.add_rotating_vectors_making_cos()
	def show_cosine_wave(self):
		axes = Axes(**self.axes_config)
		axes.shift(2 * LEFT - axes.c2p(0, 0))
		y_axis = axes.y_axis
		y_labels = y_axis.get_number_mobjects(*range(-2, 3),number_config={"num_decimal_places": 1},)
		t_tracker = ValueTracker(0)
		t_tracker.add_updater(lambda t, dt: t.increment_value(dt))
		get_t = t_tracker.get_value
		def func(x):
			return 2 * np.cos(x)
		cos_x_max = 20
		cos_wave = axes.get_graph(func, x_max=cos_x_max)
		cos_wave.set_color(YELLOW)
		shown_cos_wave = cos_wave.copy()
		shown_cos_wave.add_updater(lambda m: m.pointwise_become_partial(cos_wave, 0,np.clip(get_t() / cos_x_max, 0, 1),),)
		dot = Dot()
		dot.set_color(PINK)
		dot.add_updater(lambda d: d.move_to(y_axis.n2p(func(get_t())),))
		h_line = always_redraw(lambda: Line(dot.get_right(),shown_cos_wave.get_end(),stroke_width=1,))
		real_words = TextMobject("Real number\\\\output")
		real_words.to_edge(LEFT)
		real_words.shift(2 * UP)
		real_arrow = Arrow()
		real_arrow.add_updater(lambda m: m.put_start_and_end_on(real_words.get_corner(DR),dot.get_center(),).scale(0.9),)
		self.add(t_tracker)
		self.add(axes)
		self.add(y_labels)
		self.add(shown_cos_wave)
		self.add(dot)
		self.add(h_line)
		self.wait(2)
		self.play(FadeInFrom(real_words, RIGHT),FadeIn(real_arrow),)
		self.wait(5)
		y_axis.generate_target()
		y_axis.target.rotate(-90 * DEGREES)
		y_axis.target.center()
		y_axis.target.scale(2 / 1.5)
		y_labels.generate_target()
		for label in y_labels.target:
			label.next_to(y_axis.target.n2p(label.get_value()),DOWN, MED_SMALL_BUFF,)
		self.play(FadeOut(shown_cos_wave),FadeOut(axes.x_axis),FadeOut(h_line),)
		self.play(MoveToTarget(y_axis),MoveToTarget(y_labels),real_words.shift, 2 * RIGHT + UP,)
		self.wait()
		self.y_axis = y_axis
		self.y_labels = y_labels
		self.real_words = real_words
		self.real_arrow = real_arrow
		self.dot = dot
		self.t_tracker = t_tracker
	def transition_to_complex_plane(self):
		y_axis = self.y_axis
		y_labels = self.y_labels
		plane = self.get_complex_plane()
		plane_words = plane.label
		self.add(plane, *self.get_mobjects())
		self.play(FadeOut(y_labels),FadeOut(y_axis),ShowCreation(plane),)
		self.play(Write(plane_words))
		self.wait()
		self.plane = plane
		self.plane_words = plane_words
	def add_rotating_vectors_making_cos(self):
		plane = self.plane
		real_words = self.real_words
		real_arrow = self.real_arrow
		t_tracker = self.t_tracker
		get_t = t_tracker.get_value
		v1 = Vector(2 * RIGHT)
		v2 = Vector(2 * RIGHT)
		v1.set_color(BLUE)
		v2.set_color(interpolate_color(GREY_BROWN, WHITE, 0.5))
		v1.add_updater(lambda v: v.set_angle(get_t()))
		v2.add_updater(lambda v: v.set_angle(-get_t()))
		v1.add_updater(lambda v: v.shift(plane.n2p(0) - v.get_start()))
		v2.add_updater(lambda v: v.shift(plane.n2p(0) - v.get_start()))
		ghost_v1 = v1.copy()
		ghost_v1.set_opacity(0.5)
		ghost_v1.add_updater(lambda v: v.shift(v2.get_end() - v.get_start()))
		ghost_v2 = v2.copy()
		ghost_v2.set_opacity(0.5)
		ghost_v2.add_updater(lambda v: v.shift(v1.get_end() - v.get_start()))
		circle = Circle(color=GREY_BROWN)
		circle.set_stroke(width=1)
		circle.set_width(2 * v1.get_length())
		circle.move_to(plane.n2p(0))
		formula = TexMobject("2\\cos(x) =","e^{ix}", "+", "e^{-ix}",tex_to_color_map={
				"e^{ix}": v1.get_color(),
				"e^{-ix}": v2.get_color(),
			})
		formula.next_to(ORIGIN, UP, buff=0.75)
		formula.set_stroke(BLACK, 3, background=True)
		formula.to_edge(LEFT, buff=MED_SMALL_BUFF)
		formula_brace = Brace(formula[1:], UP)
		formula_words = formula_brace.get_text("Sum of\\\\rotations")
		formula_words.set_stroke(BLACK, 3, background=True)
		#randy = Randolph()
		#randy.to_corner(DL)
		#randy.look_at(formula)
		self.play(FadeOut(real_words),FadeOut(real_arrow),)
		self.play(FadeIn(v1),FadeIn(v2),FadeIn(circle),FadeIn(ghost_v1),FadeIn(ghost_v2),)
		self.wait(3)
		self.play(FadeInFromDown(formula))
		self.play(GrowFromCenter(formula_brace),FadeIn(formula_words),)
		self.wait(2)
		#self.play(FadeIn(randy))
		#self.play(randy.change, "pleading")
		#self.play(Blink(randy))
		#self.wait()
		#self.play(randy.change, "confused")
		#self.play(Blink(randy))
		#self.wait()
		#self.play(FadeOut(randy))
		#self.wait(20)
	def get_complex_plane(self):
		plane = ComplexPlane(**self.complex_plane_config)
		plane.add_coordinates()
		plane.label = TextMobject("Complex plane")
		plane.label.scale(1.5)
		plane.label.to_corner(UR, buff=MED_SMALL_BUFF)
		return plane


生成した動画

以上。

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?