1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

【数学こぼれ話】【Token】トーラス概念

Posted at

コーシーの積分定理によれば正則関数の積分結果は0になる。ここで問題となるのは上掲図の「三次元における(0→$∞^+$の座標系と0→$∞^-$の座標系の)二重球面状態」。なのでヤコビアンを用いて球の体積を求める時や球表面を経度(±180度)と緯度(±90度)で表す時には「半分」で考える。この様に「任意の偶関数を中心で割って奇関数二つと見做す」操作などが偶奇概念の出発地点の一つとなる。

Wikipedia「コーシーの積分定理」

\int_0^{1}\int_0^{2π}\int_0^{π}dx=\begin{vmatrix} \frac{∂x}{∂r} & \frac{∂x}{∂θ} & \frac{∂x}{∂φ}\\ \frac{∂y}{∂r} & \frac{∂y}{∂θ} & \frac{∂y}{∂φ}\\ \frac{∂z}{∂r} & \frac{∂z}{∂θ} & \frac{∂z}{∂φ}\end{vmatrix}

半径・直径・円周長・円の面積・球の表面積・球の体積の計算上の往復
68747470733a2f2f63646e2d616b2e662e73742d686174656e612e636f6d2f696d616765732f666f746f6c6966652f6f2f6f6368696d7573686130312f32303231303731362f32303231303731363034353235382e676966.gif
Yahoo知恵袋「3次元の極座標について」

  • 実はここまで徹底して嫌われている二重球面状態、トーラス座標系(Torus Coordinate System)における「大半径0、小半径1」の状態だったりする。その反対の対は「(限りなく大半径1、小半径0の比率に近い)円周$\tilde{∞}$半径1(i)の円弧」となり、その中間として「大半径1、小半径1」の単位トーラス状態が存在する。
    スクリーンショット 2023-10-20 16.00.03.png
    68747470733a2f2f63646e2d616b2e662e73742d686174656e612e636f6d2f696d616765732f666f746f6c6966652f6f2f6f6368696d7573686130312f32303231303432332f32303231303432333037353232372e676966.gif
    68747470733a2f2f63646e2d616b2e662e73742d686174656e612e636f6d2f696d616765732f666f746f6c6966652f6f2f6f6368696d7573686130312f32303231303432332f32303231303432333038303232302e676966.gif
    68747470733a2f2f63646e2d616b2e662e73742d686174656e612e636f6d2f696d616765732f666f746f6c6966652f6f2f6f6368696d7573686130312f32303231303432332f32303231303432333038303330352e676966.gif
%matplotlib nbagg
import math as m
import cmath as c
import numpy as num
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.animation as animation

#円柱データ作成
c0=num.linspace(0,m.pi*120,1201,endpoint = True)
s0=[]
for nm in range(len(c0)):
    s0.append(complex(m.cos(c0[nm]),m.sin(c0[nm])))
s1=num.array(s0)
z0=num.linspace(-1,1,1201,endpoint = True)

#「曲率」を計算
cv0=num.linspace(-1,1,1201,endpoint = True)
cv1=num.sqrt(1-cv0**2)

#トーラス計算
s2=s1*(1+cv1)
s3=s1*(1-cv1)

#小半径追加
MiHz0=num.linspace(-1,1,61,endpoint = True)
MiHz=MiHz0[::-1]
MiPx=1+num.sqrt(1-MiHz**2)
MiMx=1-num.sqrt(1-MiHz**2)
MiBx=num.sqrt(1-MiHz**2)
MiHy=num.repeat(0,61)

#小半径アニメーション(元図形)
MiAh1=num.linspace(-1,1,31,endpoint =True)
MiAh2=num.linspace(-1,1,31,endpoint = False)
MiAh3=num.concatenate([MiAh1, MiAh2[::-1]])
MiAh=num.concatenate([MiAh3[14:61], MiAh3[0:13]])
MiAv1=1-num.sqrt(1-MiAh1**2)
MiAv2=1+num.sqrt(1-MiAh2[::-1]**2)
MiAv3=num.concatenate([MiAv2, MiAv1])
MiAv=num.concatenate([MiAv3[14:61], MiAv3[0:13]])

#小半径アニメーション(回転)
MiAvC0=[]
for nm in range(len(MiAv)):
    MiAvC0.append(complex(MiAv[nm],0))
MiAvC=num.array(MiAvC0) 

#単位円データ作成
u0=num.linspace(0,m.pi*2,61,endpoint = True)
u1=[]
for nm in range(len(u0)):
    u1.append(complex(m.cos(u0[nm]),m.sin(u0[nm])))
uc=num.array(u1)
uz0=num.repeat(-1,61)
uz1=num.repeat(-0,61)
uz2=num.repeat(1,61)

#グラフ表示
plt.style.use('default')
fig = plt.figure()
ax = Axes3D(fig)
Tcode=num.linspace(0,m.pi*2,61,endpoint =True)
#描画関数定義
def unit_cylinder(n):
    plt.cla()
    #断面計算
    MiAvD0=[]
    for nm in range(len(MiAvC)):
        MiAvD0.append(c.rect(MiAv[nm],Tcode[n]))
    MiAvD=num.array(MiAvD0) 
    MiBvD0=[]
    for nm in range(len(MiBx)):
        MiBvD0.append(c.rect(MiBx[nm],Tcode[n]))
    MiBvD=num.array(MiBvD0)
    MiCvD0=[]
    for nm in range(len(MiHz)):
        MiCvD0.append(c.rect(2,Tcode[n]))
    MiCvD=num.array(MiCvD0)
    #軌跡計算
    Orb_r=abs(MiAvD[n])
    Orb0=[]
    for nm in range(len(MiCvD)):
        Orb0.append(c.rect(Orb_r,Tcode[nm]))
    Orbv=num.array(Orb0)
    Orbh=num.repeat(MiAh[n],61)
    #断面1計算
    MiAvD10=[]
    for nm in range(len(MiAvC)):
        MiAvD10.append(c.rect(MiAv[nm],Tcode[0]))
    MiAvD1=num.array(MiAvD10) 
    MiBvD10=[]
    for nm in range(len(MiBx)):
        MiBvD10.append(c.rect(MiBx[nm],Tcode[0]))
    MiBvD1=num.array(MiBvD10)
    MiCvD10=[]
    for nm in range(len(MiHz)):
        MiCvD10.append(c.rect(2,Tcode[0]))
    MiCvD1=num.array(MiCvD10)  
    #円柱描画
    ax.plot(s2.real,s2.imag,z0,color="gray",lw=0.5)
    ax.plot(s3.real,s3.imag,z0,color="gray",lw=0.5)
    #単位円描画
    ax.plot(uc.real,uc.imag,uz1,color="blue",lw=1)
    #中心線描画
    ax.plot([0,0],[0,0],[-1,1],color="black",lw=1)
    #分割原点
    ax.plot([0,MiCvD1[0].real],[0,MiCvD1[0].imag],[-1,-1],color="green",lw=1)
    ax.plot([0,uc[0].real],[0,uc[0].imag],[0,0],color="blue",lw=1)
    ax.plot([uc[0].real,MiCvD1[0].real],[uc[0].imag,MiCvD1[0].imag],[0,0],color="green",lw=1)
    ax.plot([uc[0].real,uc[0].real],[uc[0].imag,uc[0].imag],[-1,1],color="green",lw=1)    
    ax.plot([uc[0].real,MiAvD1[0].real],[uc[0].imag,MiAvD1[0].imag],[0,MiAh[0]],color="green",lw=1)
    ax.plot([0,MiCvD1[0].real],[0,MiCvD1[0].imag],[1,1],color="green",lw=1)
    ax.plot([MiCvD1[0].real,MiCvD1[0].real],[MiCvD1[0].imag,MiCvD1[0].imag],[-1,1],color="green",lw=1)
    ax.plot(MiAvD1.real,MiAvD1.imag,MiAh,color="green",lw=1)
    ax.plot(MiBvD1.real,MiBvD1.imag,MiHz,color="blue",lw=1)
    #アニメーション描画
    ax.plot([0,MiCvD[n].real],[0,MiCvD[n].imag],[-1,-1],color="black",lw=1)
    ax.plot([0,uc[n].real],[0,uc[n].imag],[0,0],color="blue",lw=1)
    ax.plot([uc[n].real,MiCvD[n].real],[uc[n].imag,MiCvD[n].imag],[0,0],color="black",lw=1)
    ax.plot([uc[n].real,uc[n].real],[uc[n].imag,uc[n].imag],[-1,1],color="black",lw=1)    
    ax.plot([uc[n].real,MiAvD[n].real],[uc[n].imag,MiAvD[n].imag],[0,MiAh[n]],color="red",lw=1)
    ax.plot([0,MiCvD[n].real],[0,MiCvD[n].imag],[1,1],color="black",lw=1)
    ax.plot([MiCvD[n].real,MiCvD[n].real],[MiCvD[n].imag,MiCvD[n].imag],[-1,1],color="black",lw=1)
    ax.plot(MiAvD.real,MiAvD.imag,MiAh,color="red",lw=1)
    ax.plot(MiBvD.real,MiBvD.imag,MiHz,color="blue",lw=1)
    #軌跡描画
    ax.plot(Orbv.real,Orbv.imag,Orbh,color="red",lw=1)
    #諸元追加
    ax.set_ylim([-2.1,2.1])
    ax.set_xlim([-2.1,2.1])
    ax.set_zlim([-2.1,2.1])
    ax.set_title("Unit Cylinder")
    ax.set_xlabel("Real")
    ax.set_ylabel("Imaginal")
    ax.set_zlabel("Cycle")
    # グラフを回転
    ax.view_init(elev=25, azim=45)

Tcode=num.linspace(0,m.pi*2,61,endpoint =True)
#Time_code0=num.arange(0,360,6) 
#Time_code=Time_code0[::-1] 
#unit_cylinder(15)
#plt.show()

ani = animation.FuncAnimation(fig, unit_cylinder, interval=50,frames=len(Time_code))
ani.save("output620.gif", writer="pillow")

「単位トーラス」は意外と身近な形で「実在する」。コンピューターRPGで良く見掛ける「北極側と南極側、東端と南端が連続する世界地図」がそれ。「実在する」とはいえ、現実の物理空間に顕現させるのは難しい?
RPG世界の形状についての幾何学的考察と可視化

1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?