0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

デカルト座標系(Cartesian Coordinate System)あるいは直交座標系(Orthogonal Coordinate System)における基底ベクトルと位置ベクトル

Last updated at Posted at 2021-08-26

デカルト座標系(Cartesian Coordinate System)あるいは直交座標系(Orthogonal Coordinate System)における基底ベクトル位置ベクトルの設定は以下となります。

#二次元(xy/rθ座標系)の場合
2次元極座標系の運動方程式
image.png

  • xy座標系
e_x=\begin{pmatrix} 1 \\ 0 \end{pmatrix},e_y=\begin{pmatrix} 0 \\ 1 \end{pmatrix}\\
r=\begin{pmatrix} x \\ y \end{pmatrix}=xe^x+ye^y
  • 対応する極座標系(Polor Coordinate System)(r,θ)への変換式
e_r=\sin(θ)e^x+\cos(θ)e^y\\
e_θ=-\sin(θ)e^x+\cos(φ)e^y
  • デカルト座標系(x,y,z)への逆変換式
e_x=\cos(θ)e^r-\sin(θ)e^θ\\
e_y=\sin(θ)e^r+\cos(θ)e^θ

#三次元(xyz/rθφ座標系)の場合
極座標系の基底ベクトル
image.png

e_x=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},e_y=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},e_z=\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\\
r=\begin{pmatrix} x \\ y \\ z \end{pmatrix}=xe^x+ye^y+ze^z
  • 対応する極座標系()(r,θ,φ)への変換式
e_r=\sin(θ)\cos(φ)e^x+\sin(θ)\sin(φ)e^y+\cos(θ)e^z\\
e_θ=/cos(θ)\cos(φ)e^x+\cos(θ)\sin(φ)e^y-\sin(θ)e^z\\
e_φ= -\sin(φ)e^x+\cos(φ)e^y
  • デカルト座標系(x,y,z)への逆変換式
e_x=\sin(θ)\cos(φ)e^r+\cos(θ)\cos(φ)e^θ-\sin(θ)e^φ\\
e_y=\sin(θ)\sin(φ)e^r+\cos(θ)\sin(φ)e^θ+\cos(θ)e^φ\\
e_z= \cos(φ)e^r-\sin(φ)e^θ

とりあえず、以下続報…

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?