0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

QiskitでQAOA w/勾配降下

Last updated at Posted at 2021-10-14

Qiskit Gradient Framework

qiskitも勾配を計算するライブラリを出していました。
https://qiskit.org/documentation/tutorials/operators/02_gradients_framework.html

これを使って勾配降下でQAOAをやってみます。

解く問題

4ノードの全結合MAX CUT とします。

image.png

ハミルトニアンは以下の形で、最小値は-4です。

(array([ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -3. ]), [PauliZ(wires=[0]) @ PauliZ(wires=[1]), PauliZ(wires=[0]) @ PauliZ(wires=[2]), PauliZ(wires=[0]) @ PauliZ(wires=[3]), PauliZ(wires=[1]) @ PauliZ(wires=[2]), PauliZ(wires=[1]) @ PauliZ(wires=[3]), PauliZ(wires=[2]) @ PauliZ(wires=[3]), Identity(wires=[0])])

実装

#General imports
import numpy as np
#Operator Imports
from qiskit.opflow import Z, X, I, StateFn
from qiskit.opflow.gradients import Gradient
# Execution Imports
from qiskit import Aer
from qiskit.utils import QuantumInstance
# Algorithm Imports
from qiskit.algorithms import VQE
from qiskit.algorithms.optimizers import CG

from qiskit.circuit import QuantumCircuit, ParameterVector
from scipy.optimize import minimize

# Instantiate the system Hamiltonian
h2_hamiltonian = 0.5*(Z^Z^I^I) + 0.5*(I^Z^Z^I) + 0.5*(I^I^Z^Z) + 0.5*(Z^I^I^Z) + 0.5*(Z^I^Z^I) + 0.5*(I^Z^I^Z) -3*(I^I^I^I)

# This is the target energy
h2_energy = -4

# Define the Ansatz
wavefunction = QuantumCircuit(4)
params = ParameterVector('theta', length=4)
wavefunction.h(range(0,4))
# it = iter(params)
wavefunction.cx(0, 1)
wavefunction.rz(params[0], 1)
wavefunction.cx(0, 1)
wavefunction.cx(1, 2)
wavefunction.rz(params[0], 2)
wavefunction.cx(1, 2)
wavefunction.cx(2, 3)
wavefunction.rz(params[0], 3)
wavefunction.cx(2, 3)
wavefunction.cx(3, 0)
wavefunction.rz(params[0], 0)
wavefunction.cx(3, 0)
wavefunction.cx(0, 2)
wavefunction.rz(params[0], 2)
wavefunction.cx(0, 2)
wavefunction.cx(1, 3)
wavefunction.rz(params[0], 3)
wavefunction.cx(1, 3)
wavefunction.barrier()

wavefunction.rx(params[1], 0)
wavefunction.rx(params[1], 1)
wavefunction.rx(params[1], 2)
wavefunction.ry(params[1], 3)
wavefunction.barrier()

wavefunction.cx(0, 1)
wavefunction.rz(params[2], 1)
wavefunction.cx(0, 1)
wavefunction.cx(1, 2)
wavefunction.rz(params[2], 2)
wavefunction.cx(1, 2)
wavefunction.cx(2, 3)
wavefunction.rz(params[2], 3)
wavefunction.cx(2, 3)
wavefunction.cx(3, 0)
wavefunction.rz(params[2], 0)
wavefunction.cx(3, 0)
wavefunction.cx(0, 2)
wavefunction.rz(params[2], 2)
wavefunction.cx(0, 2)
wavefunction.cx(1, 3)
wavefunction.rz(params[2], 3)
wavefunction.cx(1, 3)
wavefunction.barrier()

wavefunction.rx(params[3], 0)
wavefunction.rx(params[3], 1)
wavefunction.rx(params[3], 2)
wavefunction.ry(params[3], 3)

# Define the expectation value corresponding to the energy
op = ~StateFn(h2_hamiltonian) @ StateFn(wavefunction)

wavefunction.draw('mpl')

2レイヤーのQAOA回路です。
image.png

grad = Gradient(grad_method='lin_comb')
# grad = Gradient(grad_method='param_shift')

qi_sv = QuantumInstance(Aer.get_backend('aer_simulator_statevector'),
                        shots=1,
                        seed_simulator=2,
                        seed_transpiler=2)

#Conjugate Gradient algorithm
optimizer = CG(maxiter=1)

# Gradient callable
vqe = VQE(wavefunction, optimizer=optimizer, gradient=grad, quantum_instance=qi_sv)

result = vqe.compute_minimum_eigenvalue(h2_hamiltonian)
print('Result:', result.optimal_value, 'Reference:', h2_energy)

1 teration でもすごく遅く、数分かかっても終わらず。
実用に耐えません。

ちなみにPennylaneで同じ問題を勾配降下(アルゴリズムはbackprop)でやると、50イタレーションでも1秒ぐらいです。
image.png
経過時間:1.5399999618530273
Iter: 49 | Cost: -3.9952981
Pennylaneでの実装は以下の記事に書いています。
https://qiita.com/notori48/items/e78b72d196a78ac863c9

まとめ

qiskitのgradien FW を使った勾配最適化は本当に実用的なのだろうか?

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?