2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

点から円への接点を求める(wolframalphaで)

Posted at

wolframalphaは、ブラウザieだと調子が悪いので、firefoxをおすすめします。
(参考)点から円への接点を求める
https://qiita.com/tydesign/items/5ce4bd2cc58902606895
(参考)sympyで円と円の交点
https://qiita.com/mrrclb48z/items/fca16b65c9186954fedc

【例】中心(3,2) 半径 5 の円に対して、点 (15,5) から引いた2つの接線の接点を求める。

方法1:全部変数
Solve[{(x-x0)^2+(y-y0)^2=r^2,(x-x1)^2+(y-y1)^2=(x0-x1)^2+(y0-y1)^2-r^2},{x,y}]
https://ja.wolframalpha.com/input/?i=Solve%5B%7B%28x-x0%29%5E2%2B%28y-y0%29%5E2%3Dr%5E2%2C%28x-x1%29%5E2%2B%28y-y1%29%5E2%3D%28x0-x1%29%5E2%2B%28y0-y1%29%5E2-r%5E2%7D%2C%7Bx%2Cy%7D%5D
結果:
解けたみたい(表示省略)

方法2:連立方程式6つ
Solve[{(x-x0)^2+(y-y0)^2-r^2==0,(x-x1)^2+(y-y1)^2-(x0-x1)^2-(y0-y1)^2+r^2==0,x0==3,y0==2,r==5,x1==15,y1==5},{x,y}]
https://ja.wolframalpha.com/input/?i=Solve%5B%7B%28x-x0%29%5E2%2B%28y-y0%29%5E2-r%5E2%3D%3D0%2C%28x-x1%29%5E2%2B%28y-y1%29%5E2-%28x0-x1%29%5E2-%28y0-y1%29%5E2%2Br%5E2%3D%3D0%2Cx0%3D%3D3%2Cy0%3D%3D2%2Cr%3D%3D5%2Cx1%3D%3D15%2Cy1%3D%3D5%7D%2C%7Bx%2Cy%7D%5D
結果:
x≈3.8516 ∧ y≈6.92694
x≈6.06997 ∧ y≈-1.94655

方法3:連立方程式2つ
(x-3)^2+(y-2)^2=5^2,(x-15)^2+(y-5)^2=(3-15)^2+(2-5)^2-5^2
https://ja.wolframalpha.com/input/?i=%28x-3%29%5E2%2B%28y-2%29%5E2%3D5%5E2%2C%28x-15%29%5E2%2B%28y-5%29%5E2%3D%283-15%29%5E2%2B%282-5%29%5E2-5%5E2
結果:
x≈3.8516, y≈6.92694
x≈6.06997, y≈-1.94655

方法4:方法1に,座標の値を代入する方法
?誰か教えて下さい。

失敗1:実行結果:次をお試しください:
Solve[{(x-x0)^2+(y-y0)^2==r^2,(x-x1)^2+(y-y1)^2==(x0-x1)^2+(y0-y1)^2-r^2,x0==3,y0==2,r==5,x1==15,y1==5},{x,y}]
https://ja.wolframalpha.com/input/?i=Solve%5B%7B%28x-x0%29%5E2%2B%28y-y0%29%5E2%3D%3Dr%5E2%2C%28x-x1%29%5E2%2B%28y-y1%29%5E2%3D%3D%28x0-x1%29%5E2%2B%28y0-y1%29%5E2-r%5E2%2Cx0%3D%3D3%2Cy0%3D%3D2%2Cr%3D%3D5%2Cx1%3D%3D15%2Cy1%3D%3D5%7D%2C%7Bx%2Cy%7D%5D
失敗2:実行結果:次をお試しください:
Solve[{(x-x0)^2+(y-y0)^2=r^2,(x-x1)^2+(y-y1)^2=(x0-x1)^2+(y0-y1)^2-r^2=0,x0=3,y0=2,r=5,x1=15,y1=5},{x,y}]
https://ja.wolframalpha.com/input/?i=Solve%5B%7B%28x-x0%29%5E2%2B%28y-y0%29%5E2%3Dr%5E2%2C%28x-x1%29%5E2%2B%28y-y1%29%5E2%3D%28x0-x1%29%5E2%2B%28y0-y1%29%5E2-r%5E2%3D0%2Cx0%3D3%2Cy0%3D2%2Cr%3D5%2Cx1%3D15%2Cy1%3D5%7D%2C%7Bx%2Cy%7D%5D

2
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?