Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

This article is a Private article. Only a writer and users who know the URL can access it.
Please change open range to public in publish setting if you want to share this article with other users.

More than 3 years have passed since last update.

Pythonデータ解析お百度参り82:対応のないt検定

Last updated at Posted at 2020-07-02

対応のないt検定

対応のないt検定は、2つの異なる集合の平均値が異なるかどうかを検定するときに用いられます。

# 対応のないt検定
significance = 0.05
X = [68, 75, 80, 71, 73, 79, 69, 65]
Y = [86, 83, 76, 81, 75, 82, 87, 75]

t, p = stats.ttest_ind(X, Y)

print('t 値は %(t)s' %locals())
print('確率は %(p)s' %locals())

if p < significance:
    print('有意水準 %(significance)s で、有意な差があります' %locals())
else:
    print('有意水準 %(significance)s で、有意な差がありません' %locals())

課題82:対応のないt検定

6年1組と6年2組の2つのクラスで同一の算数のテストを行い、採点結果が出ました。2つのクラスで点数に差があるかどうか検定してください。

6年1組 点数 6年2組 点数
1 70 1 85
2 75 2 80
3 70 3 95
4 85 4 70
5 90 5 80
6 70 6 75
7 80 7 80
8 75 8 90

課題提出方法

  • 基本的にGoogle Colaboratoryを用いてプログラミングしてください。どうしても Google Colaboratory を用いることができない場合のみ、Jupyter Notebook または Jupyter Lab を用いてください。

  • 課題1つごとに、ノートブックを新規作成してください。1つのノートブックで複数の課題を解かないでください。

  • ノートブックを新規作成すると「Untitled.ipynb」のような名前になりますが、それを「学籍番号・氏名・課題番号」のような名前に変更してください。

  • 質問・感想・要望などございましたらぜひ書き込んでください。

  • もし課題を解くにあたって参考になったウェブサイトがあれば、それについても触れてください。

  • 課題を計算し終わった ipynb ファイルを提出するときは、指定したメールアドレスに Google Drive で共有する形で授業担当者に提出してください。


0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?