講義で scikit-learnのMLPに関する課題を出したら、clf.predict()の出力が違うという報告がありましたので調査してみました。結論は、目的変数をどんな形にするかによって、scikit-learnは柔軟に対応してくれているようです。
データのロード
import numpy as np
import pandas as pd
import urllib.request
url = "https://raw.githubusercontent.com/maskot1977/ipython_notebook/master/toydata/iris.txt"
urllib.request.urlretrieve(url, 'iris.txt')
('iris.txt', <http.client.HTTPMessage at 0x121a29d68>)
df = pd.read_csv("iris.txt", sep="\t", index_col=0)
print(df.shape) # 何行何列か確認する
df.head() # 先頭五行の内容を確認する
(150, 5)
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species | |
---|---|---|---|---|---|
1 | 5.1 | 3.5 | 1.4 | 0.2 | 0 |
2 | 4.9 | 3.0 | 1.4 | 0.2 | 0 |
3 | 4.7 | 3.2 | 1.3 | 0.2 | 0 |
4 | 4.6 | 3.1 | 1.5 | 0.2 | 0 |
5 | 5.0 | 3.6 | 1.4 | 0.2 | 0 |
one-hot-vector に変換する関数を自作
def one_hot_vectors(V): # one hot vector に変換する
T = pd.DataFrame([])
T[0] = [1 if v == 0 else 0 for v in V]
T[1] = [1 if v == 1 else 0 for v in V]
T[2] = [1 if v == 2 else 0 for v in V]
return np.array(T)
Xを説明変数、Y1を目的変数、Y2を目的変数のone-hot-vectorとします。Y1とY2は、表している内容は同じですが表現方法が異なるわけです。
X = np.array(df.iloc[:, :4].values)
Y1 = np.array(df.iloc[:, 4])
Y2 = one_hot_vectors(df.iloc[:, 4])
X
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
...........
[5.9, 3. , 5.1, 1.8]])
Y1
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
Y2
array([[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
........
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1]])
scikit-learnは目的変数の形式に応じて .predict()の出力形式を変えてくれていた
MLPの例はこちらです。
from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(max_iter=10000)
clf.fit(X, Y1)
clf.predict(X)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(max_iter=10000)
clf.fit(X, Y2)
clf.predict(X)
array([[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
.....
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1]])
いちおう RandomForest でも試してみましたが、同様でした。scikit-learn、きめ細かい設計になってますね。
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
clf.fit(X, Y1)
clf.predict(X)
/Users/kot/miniconda3/envs/py3new/lib/python3.6/site-packages/sklearn/ensemble/forest.py:248: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
clf.fit(X, Y2)
clf.predict(X)
/Users/kot/miniconda3/envs/py3new/lib/python3.6/site-packages/sklearn/ensemble/forest.py:248: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
"10 in version 0.20 to 100 in 0.22.", FutureWarning)
array([[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
[1., 0., 0.],
.....
[0., 0., 1.],
[0., 0., 1.],
[0., 0., 1.],
[0., 0., 1.],
[0., 0., 1.],
[0., 0., 1.]])
ご報告いただいた学生さん、ありがとうございました。