0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

最小二乗法の三次元版

Posted at

最小二乗法の三次元版っていうのを scikit-learn でやってみました。

# データセットの取得
from sklearn.datasets import load_iris

dataset = load_iris()
X = dataset.data[50:100, [0, 1]]
Y = dataset.data[50:100, 2]
# 最小二乗法による線形回帰
from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X, Y)
LinearRegression()
# 三次元プロット
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(X[:, 0], X[:, 1], Y)

plot = np.array([
                 [X.min(axis=0)[0], X.min(axis=0)[1]], 
                 [X.max(axis=0)[0], X.max(axis=0)[1]]
                 ])

ax.plot(plot[:, 0], plot[:, 1], model.predict(plot))

ax.set_xlabel('X0')
ax.set_ylabel('X1')
ax.set_zlabel('Y')

plt.show()

最小二乗法の三次元版_2_0.png

こんな感じで合ってますか。

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?