5
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

遺伝的アルゴリズムで巡回セールスマン問題を解いてみる(Pythonコード編)

Last updated at Posted at 2019-12-01

はじめに

「巡回セールスマン問題 遺伝的アルゴリズム」でググるとたくさんヒットすることを自分でもやってみました。

この記事は、Python コードの解説です。

仕様

Breed

交叉・突然変異を表す enum

  • ScrambleMutation ... 撹拌 (Scramble)
  • TranslocationMutation ... 転座 (Translocation)
  • SwapAdjacentPoints ... 隣接する点を交換
  • SwapMutation ... 交換 (Swap)
  • InversionMutation ... 逆位 (Inversion)
  • CyclicCrossover ... 循環交叉 (Cycle Crossover: CX)
  • PartialCrossover ... 部分的交叉 (Partial Crossover)
  • OrderCrossover ... 順序交叉 (Oder Crossover: OX)
  • OrderBasedCrossover ... 一様順序交叉 (Order Based Crossover: OX2)
  • PositionBasedCrossover ... 一様位置交叉 (Position Based Crossover: POX)
  • PartiallyMappedCrossOver ... 部分写像交叉 (Partial Mapped Crossover: PMX)
  • SubtourExchangeCrossOver ... サブツアー交換交叉(Sub tour Exchange Crossover: SXX)
  • EdgeRecombinationCrossOver ... 辺組換え交叉 (Edge Recombination Crossover: ERX)
  • EdgeAssemblyCrossOver ... 枝組立て交叉 (Edge Assembly Crossover: EAX)
  • SingleSinglePtCrossover ... 1 点交叉 (Single Point Crossover)
  • TwoPtsCrossover ... 2 点交叉 (2 Points Crossover)
  • MultiPtsCrossover ... 多点交叉 (Multi Points Crossover)
  • UniformCrossover ... 一様交叉 (Uniform Crossover)
  • SubstitutionMutation ... 置換 (Substitution)

Species クラス

セールスマンの種を表すクラスです。
$N$ 個の 2 次元の点の座標を保持し、経路の長さや適応度を測ります。
点の種類や測り方を変える場合は、このクラスから派生します。

属性・プロパティ

  • points ... 点群。省略するとランダムな点群を使う
  • N ... points=None のときランダムに生成する点の個数
  • fig_projection ... 経路を 3D グラフに表示するなら '3d'

メソッド

  • Species(points:np.ndarray=None, N:int=10, seed=None) ... コンストラクタ
    • points ... 点群。省略するとランダムな点群を使う
    • N ... points=None のときランダムに生成する点の個数
    • seed ... points=None のときの乱数の種
  • _prepare() ... 適応度・長さを計算するための準備をしておく。原点から各点までの距離を _to_origin に、点同士の距離を _distance_map にキャッシュしている
  • measure(path) ... 経路の長さを計算する
    • path ... $0 \dots N-1$ で表された経路
  • bonus(path) ... 経路の適応度のボーナス分を計算する
    • path ... $0 \dots N-1$ で表された経路
  • penalty(path) ... 経路の適応度のペナルティ分を計算する
    • path ... $0 \dots N-1$ で表された経路
  • evaluate(path) ... 経路の適応度を計算する
    • path ... $0 \dots N-1$ で表された経路
  • plot_a_path(ax, path, plot_kwargs={}) ... 経路をグラフに表示する
    • ax ... matplotlib.pyplot.subplots() などで得られた、グラフ 1 個分の領域
    • path ... $0 \dots N-1$ で表された経路

Salesman クラス

すべての点を通る経路 1 本を表します。

属性・プロパティ

  • species: Species ... セールスマンの種
  • path: numpy.ndarray ... 経路
  • picked_indeces: numpy.ndarray ... 序数コーディングで表した経路
  • fitness: float ... 適応度
  • length: float ... 経路の長さ

メソッド

  • Salesman(species:Species, path=None, picked_indeces=None) ... コンストラクタ
    • species ... セールスマンの種
    • path ... 経路。None ならば、picked_indeces から作る
    • picked_indeces ... 序数コーディングで表した経路。path も picked_indeces も None ならば、ランダムな経路を生成する
  • plot(ax, show_title:bool=True, plot_kwargs={}) ... セールスマンの経路を表示する
    • ax ... matplotlib.pyplot.subplots() などで得られた、グラフ1個分の領域
    • show_title ... タイトルに適応度と長さを表示する
    • plot_kwargs ... plt.plot() に渡すキーワード引数
  • sample_betters(salesmans, k:int, nelites:int=0) ... エリート選択とルーレット選択でセールスマンを選択する
  • breed(breed:Breed, mother:Salesman, father:Salesman) ... 指定された交雑方法で両親から子個体 2 個を生成する
    • breed:Breed ... 交雑方法
    • mother:Salesman ... 親 1
    • father:Salesman ... 親 2
  • scramble_mutation(mother:Salesman, father:Salesman) ... 撹拌 (Scramble)
  • translocation_mutation(mother:Salesman, father:Salesman) ... 転座 (Translocation)
  • swap_adjacent_points(mother:Salesman, father:Salesman) ... 隣接する点を交換
  • swap_mutation(mother:Salesman, father:Salesman) ... 交換 (Swap)
  • inversion_mutation(mother:Salesman, father:Salesman) ... 逆位 (Inversion)
  • cyclic_crossover(mother:Salesman, father:Salesman) ... 循環交叉 (Cycle Crossover: CX)
  • partial_crossover(mother:Salesman, father:Salesman) ... 部分的交叉 (Partial Crossover)
  • order_crossover(mother:Salesman, father:Salesman) ... 順序交叉 (Oder Crossover: OX)
  • position_based_crossover(mother:Salesman, father:Salesman) ... 一様位置交叉 (Position Based Crossover: POX)
  • single_pt_crossover(mother:Salesman, father:Salesman) ... 1 点交叉 (Single Point Crossover)
  • two_pts_crossover(mother:Salesman, father:Salesman) ... 2 点交叉 (2 Points Crossover)
  • multi_pts_crossover(mother:Salesman, father:Salesman) ... 多点交叉 (Multi Points Crossover)
  • uniform_crossover(mother:Salesman, father:Salesman) ... 一様交叉 (Uniform Crossover)
  • substitution_mutation(mother:Salesman, father:Salesman) ... 置換 (Substitution)

Generation クラス

1世代分のセールスマンの集合です。

属性・プロパティ

  • species: Species ... セールスマンの種
  • salesmans: sequence of Salesman ... この世代の全ての個体
  • leader: Salsesman ... この世代の適応度トップの個体
  • population: int ... 世代の個体数

メソッド

  • Generation(species:Species, salesmans) ...
    • species ... セールスマンの種
    • salesmans ... この世代の全ての個体
  • generate_0th(species:Species, population:int=1000) ... 第 0 世代を生成する
    • species ... セールスマンの種
    • population ... 世代の個体数

Model クラス

世代交代をして適切な個体を探索します。

属性・プロパティ

  • species: Species ... セールスマンの種
  • generation: Generation ... 現在の世代
  • max_population: int ... 世代の個体数
  • nelites: int ... エリート選択される個体数
  • breeded_population: int ... 生成された子個体の数
  • leader_changed_epoch: int ... 最後にトップ交代があった世代の番号
  • stopped_epoch: int ... 探索を終了した世代の番号

メソッド

  • Model(species:Species, max_population:int=None) ... 第 0 世代を生成し、モデルを構築する
    • species ... セールスマンの種
    • max_population ... 世代の個体数。None ならば、$N (\log_2 N)^2 \le N^2$
  • fit(nepochs:int=None, loggers=()) ... 世代交代して適切な個体を探索する
    • nepochs ... 世代交代の回数。None ならば、$N (\log N)^2 \le N^2$
    • loggers ... 世代交代中の情報をためる Logger の子クラスのオブジェクト
  • _evoluate(epoch) ... 次の世代の子個体を生成・選別する

Logger クラス

Model.fit() の実行中の情報を記録してグラフに表示します。

属性・プロパティ

  • _is_subplot: bool ... True: _plot() で 1 行使って自分だけのグラフを描く。False で 1 個分のグラフを描く
  • _nlogs: int ... 記録する情報の種類の数

メソッド

  • log_begin(model:Model) ... fit() 開始時の処理
  • log_end(model:Model) ... fit() 中の処理
  • log(model:Model, epoch:int) ... fit() 終了時の処理
  • plot(ax=None, epochs=None) ... グラフを描画する
    • ax ... matplotlib.pyplot.subplots() などで得られた、グラフ1個分の領域
    • epochs ... グラフ描画に使う世代。None ならば、(0 世代, 1/4 世代, 1/2 世代, 最終世代)
  • _plot(ax=None, epochs=None) ... 子クラスで実際にグラフを描いている関数
  • plot_all(loggers, epochs=None) ... 全ての情報をグラフに描画する
    • loggers ... Model.fit() に渡して情報を集めたオブジェクト
    • epochs ... グラフ描画に使う世代。None ならば、(0 世代, 1/4 世代, 1/2 世代, 最終世代)

以下の子クラスを用意してあります。

  • Logger_trace(level:int=1) ... Model.fit() の進捗状況を表示する
    • level ... 0: 何も表示しない、1: 終了時のみ結果を表示、2: 実行中に点を表示する、3: 10 世代ごとに結果表示
  • Logger_leaders() ... 世代のトップの経路を描く
  • Logger_fitness() ... 世代の適応度のトップと平均を描く
  • Logger_population(show_breeded=False) ... 世代の個体数の推移を描く
    • 生成した子個体の数も描く
  • Logger_last_fitness_histgram() ... 最終世代の適応度のヒストグラムを描く

ヘルパー関数

  • get_subplots(nax=1) ... 複数のグラフ領域をリストにして返す
    • nax ... グラフ領域の個数

実装

このコードは、Python 3.7.5 と Google Colaboratory で確認済みです。

紙面の都合で、いろいろ省略しています。

  • 交叉法ごとの利用割合を調整する処理(名残が Model.breed_rates にあります)
  • 早期終了処理
  • クラスや関数の説明
GaTsp.py
from datetime import datetime
import enum
import functools as ft
import itertools as it
import math
import random
import matplotlib.pyplot as plt
# from mpl_toolkits.mplot3d import Axes3D  # enable if use 3D plotting.
import numpy as np


@enum.unique
class Breed(enum.Enum):
    ScrambleMutation = enum.auto()
    TranslocationMutation = enum.auto()
    SwapAdjacentPoints = enum.auto()
    SwapMutation = enum.auto()
    InversionMutation = enum.auto()
    CyclicCrossover = enum.auto()
    PartialCrossover = enum.auto()
    OrderCrossover = enum.auto()
    # OrderBasedCrossover = enum.auto()
    PositionBasedCrossover = enum.auto()
    # PartiallyMappedCrossOver = enum.auto()
    # SubtourExchangeCrossOver = enum.auto()
    # EdgeRecombinationCrossOver = enum.auto()
    # EdgeAssemblyCrossOver = enum.auto()
    SinglePtCrossover = enum.auto()
    TwoPtsCrossover = enum.auto()
    MultiPtsCrossover = enum.auto()
    UniformCrossover = enum.auto()
    SubstitutionMutation = enum.auto()


## Coords of customers, all of which each salesman must travel.
## Generic property of the Salesmans
class Species:
    MIN_FITNESS = -100000
    fig_projection = None  # '3d' to plot a salesman's path on 3D

    def __init__(self, points:np.ndarray=None, N:int=10, seed=None, *args, **kwargs):
        if points is None:
            np.random.seed(seed)
            points = np.random.randn(N, 2)
            np.random.seed(None)
        self.points = points
        self.N = self.points.shape[0]
        self.indeces = np.arange(self.N, dtype=int)
        self._prepare(*args, **kwargs)

    def _prepare(self, *args, **kwargs):
        self._to_origin = np.sqrt(np.sum(self.points ** 2, axis=1))
        self._distance_map = np.zeros((self.N, self.N), dtype=np.float)
        for idx in range(self.N):
            xy_dist = np.sqrt(np.sum((self.points[idx]-self.points[:])**2, axis=1))
            self._distance_map[idx] = xy_dist

    def measure(self, path, *args, **kwargs):
        length = self._distance_map[path[:-1], path[1:]].sum()
        length += self._to_origin[path[0]]
        length += self._to_origin[path[-1]]
        return length

    def bonus(self, path, *args, **kwargs):
        bonus = 0.0
        return bonus

    def penalty(self, path, *args, **kwargs):
        penalty = 0.0
        return penalty

    def evaluate(self, path, *args, **kwargs):
        length = self.measure(path=path, *args, **kwargs)
        bonus = self.bonus(path=path, *args, **kwargs)
        penalty = self.penalty(path=path, *args, **kwargs)
        fitness = - length + bonus - penalty
        return fitness, length

    def plot_a_path(self, ax, path, plot_kwargs={}, *args, **kwargs):
        coords = self.points[path]
        ax.plot(coords[:,0], coords[:,1], **plot_kwargs)
        ax.plot((coords[-1,0], 0, coords[0,0]), (coords[-1,1], 0, coords[0,1]), **plot_kwargs)
        ax.scatter([coords[0,0]], [coords[0,1]])
        abs_max_val = np.max(np.abs(self.points)) * 1.1
        lim = (-abs_max_val, abs_max_val)
        ax.set_xlim(lim)
        ax.set_ylim(lim)


## Indivisual Salesman
class Salesman:
    _breeders = None  # initialized by Salesman.breed()

    def __init__(self, species:Species, path=None, picked_indeces=None, *args, **kwargs):
        self.species = species
        self._fitness = None
        self._length = None
        self.__indeces = None
        if path is not None:
            self.path = path if isinstance(path, np.ndarray) else np.array(path)
            self._picked_indeces = None
        elif picked_indeces is not None:  # encode picked_indeces to path.
            self._picked_indeces = picked_indeces if isinstance(picked_indeces, np.ndarray) else np.array(picked_indeces)
            indeces = np.arange(self.species.N, dtype=int)
            self.path = np.zeros(self.species.N, dtype=int)
            for idx, gene in enumerate(picked_indeces):
                self.path[idx] = indeces[gene]
                indeces[gene:-1] = indeces[gene+1:]
        else:  # generate new.
            self.path = np.random.permutation(self.species.N)
            self._picked_indeces = None
        self._hash = tuple(self.path).__hash__()

    def __hash__(self):
        return self._hash

    def __eq__(self, theother):
        return self.__hash__() == theother.__hash__()

    def __repr__(self):
        return f'- fitness: {self.fitness:.3f}\n- length: {self.length:.3f}\n- path: {self.path}'

    @property
    def picked_indeces(self):
        if self._picked_indeces is None:  # encode path to picked_indeces.
            bits = np.ones(self.species.N, dtype=np.int)
            self._picked_indeces = np.zeros(self.species.N, dtype=int)
            for idx, p in enumerate(self.path):
                self._picked_indeces[idx] = np.sum(bits[:p], initial=0)
                bits[p] = 0
        return self._picked_indeces

    @property
    def fitness(self):
        self._evaluate()
        return self._fitness

    @property
    def length(self):
        self._evaluate()
        return self._length

    def _evaluate(self):
        if self._fitness is None:
            self._fitness, self._length = self.species.evaluate(self.path)

    @property
    def _indeces(self):
        if self.__indeces is None:
            self.__indeces = np.zeros(self.species.N, dtype=int)
            self.__indeces[self.path] = self.species.indeces
        return self.__indeces

    def plot(self, ax, show_title:bool=True, plot_kwargs={}, *args, **kwargs):
        self.species.plot_a_path(ax=ax, path=self.path, plot_kwargs=plot_kwargs, *args, **kwargs)
        ax.legend()
        if show_title:
            title = plot_kwargs.get('label', '') + f': fit {self.fitness:.3f} / len {self.length:.3f}'
            ax.set_title(title)

    @staticmethod
    def sample_betters(salesmans, k:int, nelites:int=0, *args, **kwargs):
        salesmans = salesmans if isinstance(salesmans, tuple) or isinstance(salesmans, list) else tuple(salesmans)
        fits = np.array([s.fitness for s in salesmans])
        # select some part of k by roulette.
        fit_ave = fits.mean()
        fit_std = fits.std()
        weights = 1.0 / (1.0 + np.exp((fit_ave - fits) / fit_std))
        k1 = k if nelites == 0 else random.randrange(k - nelites)
        yield from random.choices(salesmans, weights=weights, k=k1)
        # select elites.
        if nelites > 0:
            fit_elite = np.sort(fits)[-nelites]
            yield from (s for s in salesmans if s.fitness >= fit_elite)
            # select lest of k by roulette.
            k2 = k - k1 - nelites
            yield from random.choices(salesmans, weights=weights, k=k2)

    @staticmethod
    def scramble_mutation(mother:'Salesman', father:'Salesman', *args, **kwargs):
        idx0, idx1 = sorted(random.sample(range(mother.species.N-1), k=2))  # at least 3 points may be shuffled.
        child1 = mother._scramble_mutation(idx0, idx1)
        child2 = father._scramble_mutation(idx0, idx1)
        return child1, child2

    def _scramble_mutation(self, idx0:int, idx1:int, *args, **kwargs):
        child_path = self.path.copy()
        np.random.shuffle(child_path[idx0:idx1+2])
        child = Salesman(species=self.species, path=child_path)
        return child

    @staticmethod
    def translocation_mutation(mother:'Salesman', father:'Salesman', *args, **kwargs):
        idx0, idx1, idx2 = sorted(random.sample(range(mother.species.N+1), k=3))
        child1 = mother._translocation_mutation(idx0, idx1, idx2)
        child2 = father._translocation_mutation(idx0, idx1, idx2)
        return child1, child2

    def _translocation_mutation(self, idx0:int, idx1:int, idx2:int, *args, **kwargs):
        child_path = np.concatenate((self.path[:idx0], self.path[idx1:idx2], self.path[idx0:idx1], self.path[idx2:]))
        child = Salesman(species=self.species, path=child_path)
        return child

    @staticmethod
    def swap_adjacent_points(mother:'Salesman', father:'Salesman', *args, **kwargs):
        indeces = np.array(random.sample(range((mother.species.N-1)//2), k=mother.species.N//10), dtype=int) * 2
        child1 = mother._swap_adjacent_points(indeces)
        child2 = father._swap_adjacent_points(indeces)
        return child1, child2

    def _swap_adjacent_points(self, indeces, *args, **kwargs):
        child_path = self.path.copy()
        child_path[indeces], child_path[indeces+1] = child_path[indeces+1], child_path[indeces]
        child = Salesman(species=self.species, path=child_path)
        return child

    @staticmethod
    def swap_mutation(mother:'Salesman', father:'Salesman', *args, **kwargs):
        idx0, idx1, idx2, idx3 = sorted(random.sample(range(mother.species.N), k=4))
        child1 = mother._swap_mutation(idx0, idx1, idx2, idx3)
        child2 = father._swap_mutation(idx0, idx1, idx2, idx3)
        return child1, child2

    def _swap_mutation(self, idx0:int, idx1:int, idx2:int, idx3:int, *args, **kwargs):
        child_path = np.concatenate((self.path[:idx0], self.path[idx2:idx3], self.path[idx1:idx2], self.path[idx0:idx1], self.path[idx3:]))
        child = Salesman(species=self.species, path=child_path)
        return child

    @staticmethod
    def inversion_mutation(mother:'Salesman', father:'Salesman', *args, **kwargs):
        idx0, idx1 = sorted(random.sample(range(mother.species.N-1), k=2))  # at least 3 points may be reversed.
        child1 = mother._inversion_mutation(idx0, idx1)
        child2 = father._inversion_mutation(idx0, idx1)
        return child1, child2

    def _inversion_mutation(self, idx0:int, idx1:int, *args, **kwargs):
        child_path = self.path.copy()
        child_path[idx0:idx1+2] = np.flip(self.path[idx0:idx1+2])
        child = Salesman(species=self.species, path=child_path)
        return child

    @staticmethod
    def cyclic_crossover(mother:'Salesman', father:'Salesman', *args, **kwargs):
        child1_path = mother.path.copy()
        child2_path = father.path.copy()
        idx = random.randrange(mother.species.N)
        val_1st = mother.path[idx]
        val_next = -1
        while val_next != val_1st:
            val_next = father.path[idx]
            child1_path[idx] = val_next
            child2_path[idx] = mother.path[idx]
            idx = mother._indeces[val_next]
        child1 = Salesman(species=mother.species, path=child1_path)
        child2 = Salesman(species=mother.species, path=child2_path)
        return child1, child2

    @staticmethod
    def partial_crossover(mother:'Salesman', father:'Salesman', *args, **kwargs):
        child1_path = mother.path.copy()
        child2_path = father.path.copy()
        child1_indeces = np.zeros(mother.species.N, dtype=int)
        child2_indeces = np.zeros(father.species.N, dtype=int)
        idx0, idx1 = sorted(random.sample(range(mother.species.N+1), k=2))  # at least 3 points may be reversed.
        for idx in range(idx0, idx1):
            child1_indeces[child1_path] = mother.species.indeces
            child2_indeces[child2_path] = father.species.indeces
            pt1 = child1_path[idx]
            pt2 = child2_path[idx]
            child1_path[idx] = pt2
            child2_path[idx] = pt1
            child1_path[child1_indeces[pt2]] = pt1
            child2_path[child2_indeces[pt1]] = pt2
        child1 = Salesman(species=mother.species, path=child1_path)
        child2 = Salesman(species=mother.species, path=child2_path)
        return child1, child2

    @staticmethod
    def order_crossover(mother:'Salesman', father:'Salesman', *args, **kwargs):
        idx = random.randrange(mother.species.N)
        child1 = mother._order_crossover(father, idx)
        child2 = father._order_crossover(mother, idx)
        return child1, child2

    def _order_crossover(self, other:'Salesman', idx, *args, **kwargs):
        head = self.path[:idx]
        tail = np.delete(other.path, other._indeces[head])
        child_path = np.concatenate((head, tail))
        child = Salesman(species=self.species, path=child_path)
        return child

    @staticmethod
    def position_based_crossover(mother:'Salesman', father:'Salesman', *args, **kwargs):
        flags = random.choices((0,1), k=mother.species.N)
        child1 = mother._position_based_crossover(father, flags)
        child2 = father._position_based_crossover(mother, flags)
        return child1, child2

    def _position_based_crossover(self, other:'Salesman', flags, *args, **kwargs):
        child_path = self.path.copy()
        swap_pts = self.path[flags == 1]
        child_path[flags == 0] = np.delete(other.path, other._indeces[swap_pts])
        child = Salesman(species=self.species, path=child_path)
        return child

    @staticmethod
    def single_pt_crossover(mother:'Salesman', father:'Salesman', *args, **kwargs):
        return Salesman._n_pts_crossover(mother, father, 1)

    @staticmethod
    def two_pts_crossover(mother:'Salesman', father:'Salesman', *args, **kwargs):
        return Salesman._n_pts_crossover(mother, father, 2)

    @staticmethod
    def multi_pts_crossover(mother:'Salesman', father:'Salesman', *args, **kwargs):
        return Salesman._n_pts_crossover(mother, father, mother.species.N // 4)

    @staticmethod
    def _n_pts_crossover(mother:'Salesman', father:'Salesman', k:int, *args, **kwargs):
        indeces = [None] + sorted(random.sample(range(mother.species.N), k=k)) + [None]
        child1_picked_indeces, child2_picked_indeces, *_ = ft.reduce(
                lambda gs, ii: (gs[0] + gs[2][ii[0]:ii[1]], gs[1] + gs[3][ii[0]:ii[1]], gs[3], gs[2]),
                zip(indeces[:-1], indeces[1:]),
                ([], [], list(mother.picked_indeces), list(father.picked_indeces)))
        child1 = Salesman(species=mother.species, picked_indeces=child1_picked_indeces)
        child2 = Salesman(species=mother.species, picked_indeces=child2_picked_indeces)
        return child1, child2

    @staticmethod
    def uniform_crossover(mother:'Salesman', father:'Salesman', *args, **kwargs):
        indeces = mother.species.indeces[random.choices((0,1), k=mother.species.N) == 1]
        child1 = mother._uniform_crossover(indeces)
        child2 = father._uniform_crossover(indeces)
        return child1, child2

    def _uniform_crossover(self, indeces, *args, **kwargs):
        child_picked_indeces = self.picked_indeces.copy()
        child_picked_indeces[indeces] = self.picked_indeces[indeces]
        child = Salesman(species=self.species, picked_indeces=child_picked_indeces)
        return child

    @staticmethod
    def substitution_mutation(mother:'Salesman', father:'Salesman', *args, **kwargs):
        child1 = mother._substitution_mutation()
        child2 = father._substitution_mutation()
        return child1, child2

    def _substitution_mutation(self, *args, **kwargs):
        N = self.species.N
        indeces = np.array([random.randint((idx-N)*N, N-idx-1) for idx in range(N)])
        child_picked_indeces = self.picked_indeces.copy()
        child_picked_indeces[indeces >= 0] = indeces[indeces >= 0]
        child = Salesman(species=self.species, picked_indeces=child_picked_indeces)
        return child

    @classmethod
    def breed(cls, breed:Breed, mother:'Salesman', father:'Salesman', *args, **kwargs):
        if cls._breeders is None:
            cls._breeders = {
                Breed.ScrambleMutation: Salesman.scramble_mutation,
                Breed.TranslocationMutation: Salesman.translocation_mutation,
                Breed.SwapAdjacentPoints: Salesman.swap_adjacent_points,
                Breed.SwapMutation: Salesman.swap_mutation,
                Breed.InversionMutation: Salesman.inversion_mutation,
                Breed.CyclicCrossover: Salesman.cyclic_crossover,
                Breed.PartialCrossover: Salesman.partial_crossover,
                Breed.OrderCrossover: Salesman.order_crossover,
                # Breed.OrderBasedCrossover: Salesman.order_based_crossover,
                Breed.PositionBasedCrossover: Salesman.position_based_crossover,
                Breed.SinglePtCrossover: Salesman.single_pt_crossover,
                Breed.TwoPtsCrossover: Salesman.two_pts_crossover,
                Breed.MultiPtsCrossover: Salesman.multi_pts_crossover,
                Breed.UniformCrossover: Salesman.uniform_crossover,
                Breed.SubstitutionMutation: Salesman.substitution_mutation,
            }
        breeder = cls._breeders.get(breed, lambda *_: None)
        return breeder(mother, father, *args, **kwargs)


## Group of Salesmans
class Generation:
    def __init__(self, species:Species, salesmans, *args, **kwargs):
        self.species = species
        self.salesmans = salesmans if isinstance(salesmans, tuple) else tuple(salesmans)
        self.leader = max(self.salesmans, key=lambda s: s.fitness)
        self.population = len(self.salesmans)

    @staticmethod
    def generate_0th(species:Species, population:int=1000, *args, **kwargs):
        children = set(Salesman(species=species) for _ in range(population - 1))
        children.add(Salesman(species=species, path=np.arange(species.N)))  # add the original path (0, 1, 2, ..., N-1)
        generation = Generation(species=species, salesmans=children)
        return generation


## Model of Genetic Algorithm for Traveling Salesman Problem.
class Model:
    def __init__(self, species:Species, max_population:int=None, *args, **kwargs):
        self.species = species
        self.max_population = int(species.N * math.log2(species.N)**2) if max_population is None else int(max_population)
        self.nelites = self.max_population // 10
        self.generation = Generation.generate_0th(species, self.max_population)
        self.breeded_population = 0
        self.leader_changed_epoch = 0
        self.stopped_epoch = 0
        self.breed_rates = {
            Breed.ScrambleMutation: 0.6,
            Breed.TranslocationMutation: 0.6,
            Breed.SwapAdjacentPoints: 0.6,
            Breed.SwapMutation: 0.6,
            Breed.InversionMutation: 0.6,
            Breed.CyclicCrossover: 0.6,
            Breed.PartialCrossover: 0.6,
            Breed.OrderCrossover: 0.6,
            # Breed.OrderBasedCrossover: 0.6,
            Breed.PositionBasedCrossover: 0.6,
            Breed.SinglePtCrossover: 0.6,
            Breed.TwoPtsCrossover: 0.6,
            Breed.MultiPtsCrossover: 0.6,
            Breed.UniformCrossover: 0.6,
            Breed.SubstitutionMutation: 0.6,
        }

    def fit(self, nepochs:int=None, loggers=(), *args, **kwargs):
        nepochs = int(self.species.N * math.log(self.species.N)**2) if nepochs is None else int(nepochs)
        epoch_to_stop = nepochs
        last_best_fitness = -1000000
        any(p.log_begin(self) for p in loggers)
        for epoch in range(nepochs):
            evoluated = self._evoluate(epoch)
            self.generation = Generation(species=self.species, salesmans=evoluated)
            if self.generation.leader.fitness > last_best_fitness:
                last_best_fitness = self.generation.leader.fitness
                self.leader_changed_epoch = epoch + 1
                epoch_to_stop = epoch + self.species.N
            any(p.log(self, epoch+1) for p in loggers)
            if epoch > epoch_to_stop:
                self.stopped_epoch = epoch + 1
                break
        any(p.log_end(self) for p in loggers)

    def _evoluate(self, epoch, *args, **kwargs):
        children = set(self.generation.salesmans)
        nparents = self.max_population - epoch * self.species.N // 10
        mothers = Salesman.sample_betters(self.generation.salesmans, nparents, self.nelites)
        fathers = Salesman.sample_betters(self.generation.salesmans, nparents, self.nelites)
        for _ in (children.update(Salesman.breed(breed, mother, father))
                for mother, father in zip(mothers, fathers) if mother != father
                for breed, rate in self.breed_rates.items() if random.random() < rate):
            pass
        self.breeded_population = len(children)
        betters = set(Salesman.sample_betters(children, self.max_population, self.nelites))
        return betters


## Loggers for Model.fit()
class Logger:
    COLORS=('red','green','blue','magenta','cyan')
    STYLES=('-','--','-.')
    _is_subplot = True
    _nlogs = 1

    def __init__(self, *args, **kwargs):
        pass

    def log_begin(self, model:Model, *args, **kwargs):
        self._logs = [[] for _ in range(self._nlogs)]
        self.log(model=model, epoch=0)

    def log_end(self, model:Model, *args, **kwargs):
        self._stopped_epoch = model.stopped_epoch

    def log(self, model:Model, epoch:int, *args, **kwargs):
        pass

    def plot(self, ax=None, epochs=None, *args, **kwargs):
        if epochs is None:
            nepochs = self._stopped_epoch
            epochs = (0, nepochs // 4, nepochs // 2, nepochs) if nepochs > 3 else (0, nepochs)
        self._plot(ax=ax, epochs=epochs, *args, **kwargs)

    def _plot(self, ax=None, epochs=None, *args, **kwargs):
        pass

    def _plot_epoch_lines(self, ax, epochs, y_lim, *args, **kwargs):
        ax.set_ylim(y_lim)
        for epoch in epochs:
            ax.plot((epoch, epoch), y_lim, color='gray', linestyle=':')

    def _offset_lim(self, y_min, y_max, *args, **kwargs):
        offset = (y_max - y_min) / 20
        return y_min - offset, y_max + offset

    @staticmethod
    def plot_all(loggers, epochs=None, *args, **kwargs):
        any(p.plot(ax=None, epochs=epochs, *args, **kwargs) for p in loggers if not p._is_subplot)
        subloggers = [p for p in loggers if p._is_subplot]
        if len(subloggers) > 0:
            axes = get_subplots(nax=len(subloggers))
            any(p.plot(ax=axes.pop(0), epochs=epochs, *args, **kwargs) for p in subloggers)
            plt.show()


class Logger_trace(Logger):
    _is_subplot = False

    def __init__(self, level:int=1, *args, **kwargs):
        self._level = level
        self._trace = self._l3 if level == 3 else self._l2 if level == 2 else (lambda *_: None)

    def log_begin(self, model:Model, *args, **kwargs):
        self._st = datetime.now()
        if self._level == 1:
            print('start at', self._st.strftime('%Y/%m/%d %H:%M:%S'))
        elif self._level == 2:
            print('start at', self._st.strftime('%Y/%m/%d %H:%M:%S'), end='')
        super().log_begin(model=model, *args, **kwargs)

    def log_end(self, model:Model, *args, **kwargs):
        et = datetime.now()
        super().log_end(model=model, *args, **kwargs)
        if self._level > 0:
            print(f'\n- time: {str(et - self._st)[:-3]}')
            print(f'- epoch: {model.stopped_epoch}({model.leader_changed_epoch})')
            print(f'{model.generation.leader}')

    def log(self, model:Model, epoch:int, *args, **kwargs):
        self._trace(model, epoch)

    def _l2(self, model:Model, epoch:int, *args, **kwargs):
        dot = '+' if epoch % 10 == 0 else '.'
        print(dot, end='')
        if epoch % 100 == 0:
            ct = datetime.now()
            print(f' fitness: {model.generation.leader.fitness:.3f}({model.leader_changed_epoch}) {str(ct - self._st)[:-3]}')

    def _l3(self, model:Model, epoch:int, *args, **kwargs):
        if epoch % 10 == 0:
            print(f'{epoch}: {model.generation.leader}')


class Logger_leaders(Logger):
    _is_subplot = False

    def log_begin(self, model:Model, *args, **kwargs):
        super().log_begin(model=model, *args, **kwargs)
        self._original = Salesman(model.species, path=model.species.indeces)
        self._projection = model.species.fig_projection

    def log(self, model:Model, epoch:int, *args, **kwargs):
        self._logs[0].append(model.generation.leader)

    def _plot(self, ax=None, epochs=None, *args, **kwargs):
        nplots = len(epochs)
        axes = get_subplots(nax=nplots+1, projection=self._projection)
        self._original.plot(ax=axes.pop(0), plot_kwargs=dict(label=f'original'))
        for epoch in epochs:
            self._logs[0][epoch].plot(ax=axes.pop(0), plot_kwargs=dict(label=f'{epoch}th'))
        plt.show()


class Logger_fitness(Logger):
    _nlogs = 2

    def log(self, model:Model, epoch:int, *args, **kwargs):
        self._logs[0].append(model.generation.leader.fitness)
        self._logs[1].append(sum(s.fitness for s in model.generation.salesmans) / model.generation.population)

    def _plot(self, ax, epochs=None, *args, **kwargs):
        xs = np.arange(len(self._logs[0]))
        ax.plot(xs, self._logs[0], label='best in the history', color=(0,0,1))
        ax.plot(xs, self._logs[1], label='average of each generation', color=(0,0,1), linestyle='--')
        y_lim = self._offset_lim(min(self._logs[0]), max(self._logs[0]))
        self._plot_epoch_lines(ax, epochs, y_lim)
        ax.set_xlabel('generation')
        ax.set_ylabel('fitness')
        ax.set_title('fitness')
        ax.legend()


class Logger_population(Logger):
    _nlogs = 2

    def __init__(self, show_breeded:bool=False, *arggs, **kwargs):
        self._show_breeded = show_breeded

    def log_begin(self, model:Model, *args, **kwargs):
        super().log_begin(model=model, *args, **kwargs)
        self._max_population = model.max_population

    def log(self, model:Model, epoch:int, *args, **kwargs):
        self._logs[0].append(model.generation.population)
        self._logs[1].append(model.breeded_population)

    def _plot(self, ax=None, epochs=None, *args, **kwargs):
        xs = np.arange(len(self._logs[0]))
        ax.plot(xs, [v for v in self._logs[0]], label='population')
        if self._show_breeded:
            ax.plot(xs, [v for v in self._logs[1]], label='breeded')
            y_max = max(self._logs[1])
        else:
            y_max = max(self._logs[0])
        ax.plot((epochs[0], epochs[-1]), (self._max_population, self._max_population), color='gray', linestyle=':')
        y_lim = self._offset_lim(min(self._logs[0]), y_max)
        self._plot_epoch_lines(ax, epochs, y_lim)
        ax.set_xlabel('epoch')
        ax.set_ylabel('population')
        ax.set_title('population')
        ax.legend()


class Logger_last_fitness_histgram(Logger):
    def log_end(self, model:Model, *args, **kwargs):
        super().log_end(model=model, *args, **kwargs)
        self._logs[0] = [s.fitness for s in model.generation.salesmans]

    def _plot(self, ax=None, epochs=None, *args, **kwargs):
        ax.hist(self._logs[0], 20)
        ax.set_xlabel('fitness')
        ax.set_ylabel('count of salesmans')
        ax.set_title('fitnesses at last')


class Logger_breed_legend(Logger):
    def _plot(self, ax=None, epochs=None, *args, **kwargs):
        for breed, color, style in zip(Breed, it.cycle(self.COLORS), it.cycle(self.STYLES)):
            ax.plot((0, 1), (0, 0), label=f'{breed.value} {breed}', color=color, linestyle=style)
        ax.legend()
        ax.set_xlim((0.0, 1.0))
        ax.set_xticks(())
        ax.set_ylim((0.0, 1.0))
        ax.set_yticks(())
        ax.set_title('legend')


## support functions.
def get_subplots(nax=1, *args, **kwargs):
    rows = 1 if nax == 5 else (nax + 3) // 4
    cols = 5 if nax == 5 else 4 if nax > 4 else nax
    fig = plt.figure()
    fig.set_figwidth(20.0)
    fig.set_figheight(rows * (20 // cols))
    axes = [fig.add_subplot(rows, cols, ridx * cols + cidx + 1, *args, **kwargs) for ridx in range(rows) for cidx in range(cols)]
    return axes

おわりに

多くの交雑を実装したのでコードが長くなりました。
実行結果は別記事にします。

5
7
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
7

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?