1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

潜在構造分析(多変量解析入門Ⅱ 河口至商先生)

Last updated at Posted at 2018-04-25

とりあえずやってみました。結果はあっていますが、修正が必要だと感じています。

# 潜在構造分析

data=data.frame(pattern=1:8,r1=c(1,1,1,0,1,0,0,0),r2=c(1,1,0,1,0,1,0,0),r3=c(1,0,1,1,0,0,1,0),total=c(61,44,89,20,71,49,39,131))

P=p=array(0,dim=c(2,2))

P[1,1]=sum(data$total[data$r3==1])/sum(data$total)
P[1,2]=sum(data$total[data$r3==1 & data$r2==1])/sum(data$total)
P[2,1]=sum(data$total[data$r3==1 & data$r1==1])/sum(data$total)
P[2,2]=sum(data$total[data$r3==1 & data$r1==1 & data$r2==1])/sum(data$total)

p[1,1]=1
p[1,2]=sum(data$total[data$r2==1])/sum(data$total)
p[2,1]=sum(data$total[data$r1==1])/sum(data$total)
p[2,2]=sum(data$total[data$r1==1 & data$r2==1])/sum(data$total)

func=function(s){
  
  matrix=P-p*s
  
  value=matrix[1,1]*matrix[2,2]-matrix[1,2]*matrix[2,1]
  
  return(value)
  
}

func_data=data.frame(s=seq(-1,1,0.001),values=0)

for(j in 1:nrow(func_data)){
  
func_data$values[j]=func(func_data$s[j])
  
}

# newton-raphson

values=c(-100,100);solution=c()

for(k in 1:2){

times=100
newton_raphson=data.frame(times=1:times,value=0,f=0,df=0)
value=values[k]
for(j in 1:nrow(newton_raphson)){
f<-func(value)
df<-(func(value+0.0001)-func(value))/(0.0001)

  newton_raphson$f[j]=f
  newton_raphson$df[j]=df
  value=-f/df+value

  newton_raphson$value[j]=value
}

solution=c(solution,newton_raphson$value[nrow(newton_raphson)])

}

solution=sort(solution,decreasing = T)

x=array(0,dim=c(2,2))

for(k in 1:length(solution)){
  
matrix=P-solution[k]*p 

matrix=matrix[2,];

matrix[1]=-matrix[1];

x[k,]=matrix
  
}

x=t(x);

x_data=data.frame(num=1:nrow(x),x)

x_data=x_data[order(x_data$num,decreasing=T),]

x=x_data[,2:ncol(x_data)]

E_x=diag( 1/solve(x)[,1],2)

pai2=E_x%*%solve(x)

y=array(0,dim=c(2,2))

for(k in 1:length(solution)){
  
matrix=t(P)-solution[k]*t(p) 

matrix=matrix[2,];

matrix[1]=-matrix[1];

y[k,]=matrix
  
}

y=t(y);

y_data=data.frame(num=1:nrow(y),y)

y_data=y_data[order(y_data$num,decreasing=T),]

y=y_data[,2:ncol(y_data)]

E_y=diag( 1/solve(y)[,1],2)

pai1=E_y%*%solve(y)

M=solve(t(pai1))%*%p%*%solve(pai2)

result=data.frame(潜在クラス=c("好意的","非好意的"),クラスの確率=diag(M),r1=pai1[,2],r2=pai2[,2],r3=solution)


# 潜在構造分析(改良)

data=data.frame(pattern=1:8,r1=c(1,1,1,0,1,0,0,0),r2=c(1,1,0,1,0,1,0,0),r3=c(1,0,1,1,0,0,1,0),total=c(61,44,89,20,71,49,39,131))

P=p=array(0,dim=c(2,2))

P[1,1]=sum(data$total[data$r3==1])/sum(data$total)
P[1,2]=sum(data$total[data$r3==1 & data$r2==1])/sum(data$total)
P[2,1]=sum(data$total[data$r3==1 & data$r1==1])/sum(data$total)
P[2,2]=sum(data$total[data$r3==1 & data$r1==1 & data$r2==1])/sum(data$total)

p[1,1]=1
p[1,2]=sum(data$total[data$r2==1])/sum(data$total)
p[2,1]=sum(data$total[data$r1==1])/sum(data$total)
p[2,2]=sum(data$total[data$r1==1 & data$r2==1])/sum(data$total)

pisx=eigen(solve(p)%*%P)$values
X=eigen(solve(p)%*%P)$vectors

(P-pisx[1]*p)%*%X[,1]
(P-pisx[2]*p)%*%X[,2]

E_x=diag(c(1/solve(X)[,1]))
pai2=E_x%*%solve(X)


pisy=eigen(solve(t(p))%*%t(P))$values
Y=eigen(solve(t(p))%*%t(P))$vectors

(t(P)-pisy[1]*t(p))%*%Y[,1]
(t(P)-pisy[2]*t(p))%*%Y[,2]

E_y=diag(c(1/solve(Y)[,1]))
pai1=E_y%*%solve(Y)

M=solve(t(pai1))%*%p%*%solve(pai2)

result=data.frame(潜在クラス=c("好意的","非好意的"),クラスの確率=diag(M),r1=pai1[,2],r2=pai2[,2],r3=pisx)

1
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?