0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

Q.変数の中にある数字を使ってグループ化したい

Last updated at Posted at 2021-12-04

はじめに

具体的な問題としては,Stanの出力結果で配列化したパラメータをRで受け取った時の問題です。

配列化されたstanfitオブジェクトは次のように出力されます。

> fit
   variable    mean  median    sd   mad      q5     q95 rhat ess_bulk ess_tail
 lp__       -492.44 -492.03 11.36 11.31 -511.69 -474.75 1.00      760     1384
 theta[1,1]    0.34    0.29  0.24  0.26    0.02    0.78 1.00     6872     2172
 theta[2,1]    0.33    0.28  0.24  0.27    0.02    0.78 1.00     7548     2512
 theta[3,1]    0.34    0.30  0.23  0.27    0.02    0.77 1.00     6163     2511
 theta[4,1]    0.33    0.29  0.24  0.27    0.02    0.78 1.00     6515     2574
 theta[5,1]    0.33    0.30  0.24  0.27    0.03    0.78 1.00     5928     2481
 theta[6,1]    0.34    0.30  0.24  0.27    0.02    0.79 1.00     7291     1701
 theta[7,1]    0.45    0.43  0.28  0.35    0.04    0.93 1.00     3659     2281
 theta[8,1]    0.59    0.63  0.27  0.32    0.09    0.97 1.00     4358     2337
 theta[9,1]    0.59    0.62  0.27  0.33    0.10    0.97 1.00     4639     2536

これをextractして,tibble型にしてもこんな感じです。

> df <- fit.stanfit %>% rstan::extract() %>% as.data.frame %>% as_tibble
> df
# A tibble: 4,000 × 1,013
   theta.1.1 theta.2.1 theta.3.1 theta.4.1 theta.5.1 theta.6.1 theta.7.1 theta.8.1 theta.9.1 theta.10.1 theta.11.1 theta.12.1
       <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>      <dbl>      <dbl>      <dbl>
 1    0.120     0.0796    0.584     0.264    0.00837    0.592     0.484     0.279      0.530      0.814      0.969      0.510
 2    0.293     0.309     0.0590    0.0541   0.0484     0.0178    0.183     0.163      0.292      0.979      0.949      0.633
 3    0.406     0.200     0.0668    0.158    0.244      0.433     0.446     0.0483     0.262      0.179      0.954      0.146
 4    0.133     0.583     0.216     0.480    0.400      0.0277    0.749     0.499      0.982      0.288      0.708      0.145
 5    0.0257    0.242     0.384     0.0892   0.0582     0.261     0.904     0.636      0.868      0.965      0.624      0.974
 6    0.382     0.575     0.362     0.585    0.0867     0.138     0.0604    0.0633     0.192      0.678      0.614      0.513
 7    0.881     0.372     0.476     0.575    0.607      0.582     0.183     0.647      0.860      0.749      0.558      0.967
 8    0.371     0.166     0.304     0.289    0.440      0.499     0.490     0.746      0.621      0.575      0.308      0.903
 9    0.642     0.356     0.241     0.239    0.0686     0.336     0.128     0.738      0.590      0.984      0.813      0.817

これを縦長にして,なんとかここまできたとします。

> df %>% rowid_to_column("iter") %>% pivot_longer(-iter)
# A tibble: 4,052,000 × 3
    iter name         value
   <int> <chr>        <dbl>
 1     1 theta.1.1  0.120  
 2     1 theta.2.1  0.0796 
 3     1 theta.3.1  0.584  
 4     1 theta.4.1  0.264  
 5     1 theta.5.1  0.00837
 6     1 theta.6.1  0.592  
 7     1 theta.7.1  0.484  
 8     1 theta.8.1  0.279  
 9     1 theta.9.1  0.530  
10     1 theta.10.1 0.814 

あとは名前でgroup_byしてsummariseすればEAPとかは出るんですが・・・

> df %>% rowid_to_column("iter") %>% pivot_longer(-iter) %>% 
+   group_by(name) %>% summarise(EAP = mean(value))
# A tibble: 1,013 × 2
   name         EAP
   <chr>      <dbl>
 1 lp__     -492.  
 2 lp.1.1    -12.6 
 3 lp.1.2     -1.82
 4 lp.10.1    -1.50
 5 lp.10.2    -5.68
 6 lp.100.1   -1.14
 7 lp.100.2  -10.3 
 8 lp.101.1   -1.25
 9 lp.101.2  -11.0 
10 lp.102.1   -1.37
# … with 1,003 more rows

ここでふと,「あ,ここから配列[i,j]を配列名,i, jの変数名にしたいな,と。
それが今日のお題。

Q.変数の中にある数字を使ってグループ化したい

次のデータフレームsampleを例にします。

sample <- data.frame(
  name = c("theta.1.1","gamma.1.2","theta.2.1","lambda.2.2"),
  value = c(0.120,0.0796,0.584,0.264)
)

これの中身。

> sample
        name  value
1  theta.1.1 0.1200
2  gamma.1.2 0.0796
3  theta.2.1 0.5840
4 lambda.2.2 0.2640

目標はこちら。

        name  value variables val1 val2
1  theta.1.1 0.1200     theta    1    1
2  gamma.1.2 0.0796     gamma    1    2
3  theta.2.1 0.5840     theta    2    1
4 lambda.2.2 0.2640    lambda    2    2

さあ,どうしましょう。
解答編はこちら。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?