0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

放送大学 入門微分積分 演習問題1メモ

Posted at

A2(1)

lim n→∞ (1+(1/n))^nになるよう、mを設定する
ex. 3n=m, n=2m

B1(1)

|bn|<ε/2 ...①
N1>2K/εと定義する ...②

|An-α|= A + B の箇所において、

A
A = |\frac{b_1+b_2...b_N}{n}|<|\frac{K}{N1}|

分子はKと定義、分母はnより小さいと定義したN1にすることで、左辺より大きくなる
②より、

|\frac{K}{N1}|<\frac{K}{\frac{2K}{ε}}=\frac{ε}{2}
B
B = |\frac{b_{N+1} + b_{N+2} ...b_n}{n}|

②より、n|<ε/2, つまり(bN+1 + bN+2 ...bn)はε/2*数(n - N)より小さくなる

|\frac{b_{N+1} + b_{N+2} ...b_n}{n}| \times \frac{1}{n} < (n-N) \times \frac{ε}{2} \times \frac{1}{n}

a=(n-N)nは0<a<1であるため、B<ε/2

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?