1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

制御工学でよく使う式のLaTeX表記まとめ

Last updated at Posted at 2024-12-10

前提

プリアンブルで\usepackage{amsmath}をしておくこと。

もっと良い書き方があればぜひ教えてください。

線形システムの表記

状態方程式

連続時間

\begin{align}
  P :\begin{cases}\begin{aligned}
      \dot{x}(t) & = Ax(t) + Bu(t) \\
      y(t)       & = Cx(t) + Du(t)
    \end{aligned}\end{cases}
\end{align}

image.png

\begin{align}
  P :\begin{cases}\begin{aligned}
      \dot{x}(t) & = \begin{bmatrix}
                       A_{11} & A_{12} \\
                       A_{21} & A_{22}
                     \end{bmatrix} x(t) + \begin{bmatrix}
                                            B_1 \\
                                            B_2
                                          \end{bmatrix} u(t) \\
      y(t)       & = \begin{bmatrix}
                       C_1 & C_2
                     \end{bmatrix} x(t) + \begin{bmatrix}
                                            D_1
                                          \end{bmatrix} u(t)
    \end{aligned}\end{cases}
\end{align}

image.png

離散時間

\begin{align}
  P:\begin{cases}\begin{aligned}
      x[k+1] & = Ax[k] + Bu[k] \\
      y[k]   & = Cx[k] + Du[k]
    \end{aligned}\end{cases}
\end{align}

image.png

\begin{align}
  P:\begin{cases}\begin{aligned}
      x[k+1] & = \begin{bmatrix}
                   A_{11} & A_{12} \\
                   A_{21} & A_{22}
                 \end{bmatrix} x[k] + \begin{bmatrix}
                                        B_1 \\
                                        B_2
                                      \end{bmatrix} u[k] \\
      y[k]   & = \begin{bmatrix}
                   C_1 & C_2
                 \end{bmatrix} x[k] + \begin{bmatrix}
                                        D_1
                                      \end{bmatrix} u[k]
    \end{aligned}\end{cases}
\end{align}

image.png

伝達関数

\begin{align}
  P(s) & = \frac{Y(s)}{U(s)}                                                                   \\
       & = \frac{a_0 + a_1s + a_2s^2 + \cdots + a_ns^n}{b_0 + b_1s + b_2s^2 + \cdots + b_ms^m} \\
       & = \frac{\sum_{i=0}^{n}a_is^i}{\sum_{j=0}^{m}b_js^j}                                   \\
       & = k\frac{(s - z_1)(s - z_2) \cdots (s - z_n)}{(s - p_1)(s - p_2) \cdots (s - p_m)}    \\
       & = C(sI - A)^{-1}B + D                                                                 \\
       & =\left[\begin{array}{c|c}  % Doyleの表記
                    A & B \\ \hline
                    C & D
                  \end{array}\right]
\end{align}

image.png

非線形

そのうちやります…

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?