0
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Data Every Day: 成人の国勢調査所得

Last updated at Posted at 2020-12-04

tldr

KggleのAdult Census IncomeHigh Performance Income Prediction - Data Every Day #029に沿ってやっていきます。

実行環境はGoogle Colaboratorです。

インポート

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import sklearn.preprocessing as sp
from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

import tensorflow as tf

データのダウンロード

Google Driveをマウントします。

from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive

KaggleのAPIクライアントを初期化し、認証します。
認証情報はGoogle Drive内(/content/drive/My Drive/Colab Notebooks/Kaggle)にkaggle.jsonとして置いてあります。

import os
kaggle_path = "/content/drive/My Drive/Colab Notebooks/Kaggle"
os.environ['KAGGLE_CONFIG_DIR'] = kaggle_path

from kaggle.api.kaggle_api_extended import KaggleApi
api = KaggleApi()
api.authenticate() 

Kaggle APIを使ってデータをダウンロードします。

dataset_id = 'uciml/adult-census-income'
dataset = api.dataset_list_files(dataset_id)
file_name = dataset.files[0].name
file_path = os.path.join(api.get_default_download_dir(), file_name)
file_path
Warning: Looks like you're using an outdated API Version, please consider updating (server 1.5.10 / client 1.5.9)





'/content/adult.csv'
api.dataset_download_file(dataset_id, file_name, force=True, quiet=False)
100%|██████████| 450k/450k [00:00<00:00, 49.3MB/s]

Downloading adult.csv.zip to /content









True
import zipfile

zip_path = file_path + '.zip'
with zipfile.ZipFile(zip_path) as existing_zip:
    existing_zip.extractall('/content')

データの読み込み

Padasを使ってダウンロードしてきたCSVファイルを読み込みます。

data = pd.read_csv(file_path)
data
age workclass fnlwgt education education.num marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country income
0 90 ? 77053 HS-grad 9 Widowed ? Not-in-family White Female 0 4356 40 United-States <=50K
1 82 Private 132870 HS-grad 9 Widowed Exec-managerial Not-in-family White Female 0 4356 18 United-States <=50K
2 66 ? 186061 Some-college 10 Widowed ? Unmarried Black Female 0 4356 40 United-States <=50K
3 54 Private 140359 7th-8th 4 Divorced Machine-op-inspct Unmarried White Female 0 3900 40 United-States <=50K
4 41 Private 264663 Some-college 10 Separated Prof-specialty Own-child White Female 0 3900 40 United-States <=50K
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
32556 22 Private 310152 Some-college 10 Never-married Protective-serv Not-in-family White Male 0 0 40 United-States <=50K
32557 27 Private 257302 Assoc-acdm 12 Married-civ-spouse Tech-support Wife White Female 0 0 38 United-States <=50K
32558 40 Private 154374 HS-grad 9 Married-civ-spouse Machine-op-inspct Husband White Male 0 0 40 United-States >50K
32559 58 Private 151910 HS-grad 9 Widowed Adm-clerical Unmarried White Female 0 0 40 United-States <=50K
32560 22 Private 201490 HS-grad 9 Never-married Adm-clerical Own-child White Male 0 0 20 United-States <=50K

32561 rows × 15 columns

下準備

欠損値の処理

data.isnull().sum()
age               0
workclass         0
fnlwgt            0
education         0
education.num     0
marital.status    0
occupation        0
relationship      0
race              0
sex               0
capital.gain      0
capital.loss      0
hours.per.week    0
native.country    0
income            0
dtype: int64
値に「?」が入っている数を数えます
data.isin(['?']).sum()
age                  0
workclass         1836
fnlwgt               0
education            0
education.num        0
marital.status       0
occupation        1843
relationship         0
race                 0
sex                  0
capital.gain         0
capital.loss         0
hours.per.week       0
native.country     583
income               0
dtype: int64
data = data.replace('?', np.NaN)
data.isna().sum()
age                  0
workclass         1836
fnlwgt               0
education            0
education.num        0
marital.status       0
occupation        1843
relationship         0
race                 0
sex                  0
capital.gain         0
capital.loss         0
hours.per.week       0
native.country     583
income               0
dtype: int64

educationとeducation.num列は同じ情報をエンコードしただけなので、educationは削除します。

data.loc[:, ['education', 'education.num']]
education education.num
0 HS-grad 9
1 HS-grad 9
2 Some-college 10
3 7th-8th 4
4 Some-college 10
... ... ...
32556 Some-college 10
32557 Assoc-acdm 12
32558 HS-grad 9
32559 HS-grad 9
32560 HS-grad 9

32561 rows × 2 columns

data = data.drop('education', axis=1)

オブジェクト型の処理

data.dtypes
age                int64
workclass         object
fnlwgt             int64
education         object
education.num      int64
marital.status    object
occupation        object
relationship      object
race              object
sex               object
capital.gain       int64
capital.loss       int64
hours.per.week     int64
native.country    object
income            object
dtype: object
categorical_features =  [
    'workclass', 
    'marital.status', 
    'occupation', 
    'relationship', 
    'race', 
    'sex', 
    'native.country']
def get_uniques(df, columns):
    uniques = dict()
    for column in columns:
        uniques[column] = list(df[column].unique())
    return uniques
get_uniques(data, categorical_features)
{'marital.status': ['Widowed',
  'Divorced',
  'Separated',
  'Never-married',
  'Married-civ-spouse',
  'Married-spouse-absent',
  'Married-AF-spouse'],
 'native.country': ['United-States',
  nan,
  'Mexico',
  'Greece',
  'Vietnam',
  'China',
  'Taiwan',
  'India',
  'Philippines',
  'Trinadad&Tobago',
  'Canada',
  'South',
  'Holand-Netherlands',
  'Puerto-Rico',
  'Poland',
  'Iran',
  'England',
  'Germany',
  'Italy',
  'Japan',
  'Hong',
  'Honduras',
  'Cuba',
  'Ireland',
  'Cambodia',
  'Peru',
  'Nicaragua',
  'Dominican-Republic',
  'Haiti',
  'El-Salvador',
  'Hungary',
  'Columbia',
  'Guatemala',
  'Jamaica',
  'Ecuador',
  'France',
  'Yugoslavia',
  'Scotland',
  'Portugal',
  'Laos',
  'Thailand',
  'Outlying-US(Guam-USVI-etc)'],
 'occupation': [nan,
  'Exec-managerial',
  'Machine-op-inspct',
  'Prof-specialty',
  'Other-service',
  'Adm-clerical',
  'Craft-repair',
  'Transport-moving',
  'Handlers-cleaners',
  'Sales',
  'Farming-fishing',
  'Tech-support',
  'Protective-serv',
  'Armed-Forces',
  'Priv-house-serv'],
 'race': ['White',
  'Black',
  'Asian-Pac-Islander',
  'Other',
  'Amer-Indian-Eskimo'],
 'relationship': ['Not-in-family',
  'Unmarried',
  'Own-child',
  'Other-relative',
  'Husband',
  'Wife'],
 'sex': ['Female', 'Male'],
 'workclass': [nan,
  'Private',
  'State-gov',
  'Federal-gov',
  'Self-emp-not-inc',
  'Self-emp-inc',
  'Local-gov',
  'Without-pay',
  'Never-worked']}

各データの特性を見て

  • Labelエンコード
  • Onehotエンコード
  • Ordinalエンコード

のどれでエンコードするか判断する

binary_features = ['sex']
nominal_features = [
    'workclass', 
    'marital.status', 
    'occupation', 
    'relationship', 
    'race', 
    'native.country',
]

Binary エンコード

def binary_encode(df, columns):
    label_encoder = sp.LabelEncoder()
    for column in columns:
        df[column] = label_encoder.fit_transform(df[column])
    return df

Onehotエンコード

def onehot_encode(df, columns):
    for column in columns:
        dummies = pd.get_dummies(data[column])
        df = pd.concat([df, dummies], axis=1)
        df = df.drop(column, axis=1)
    return df
data = binary_encode(data, binary_features)
data = onehot_encode(data, nominal_features)

スケーリング

y = data['income']
X = data.drop('income', axis=1)
label_encoder = sp.LabelEncoder()
y = label_encoder.fit_transform(y)
y_mappings = {index: label for index, label in enumerate(label_encoder.classes_)}
scaler = sp.MinMaxScaler()
X = pd.DataFrame(scaler.fit_transform(X), columns=X.columns)

Training

Tensorflowを使ってモデルを構築します。
最後のレイヤーの活性化関数はSimoidを使用します。

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8)
model = tf.keras.Sequential([
    tf.keras.layers.Dense(16, activation='relu', input_shape=(88, )),
    tf.keras.layers.Dense(16, activation='relu'),
    tf.keras.layers.Dense(1, activation='sigmoid'),
])

model.summary()

optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)

metrics = [
    tf.keras.metrics.BinaryAccuracy(name='acc'),
    tf.keras.metrics.AUC(name='auc'),
]

model.compile(
    optimizer=optimizer,
    loss='binary_crossentropy',
    metrics=metrics,
)

batch_size = 32
epochs = 100

history = model.fit(
    X_train,
    y_train,
    validation_split=0.2,
    batch_size=batch_size,
    epochs=epochs,
    verbose=0,
)
Model: "sequential_3"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_10 (Dense)             (None, 16)                1424      
_________________________________________________________________
dense_11 (Dense)             (None, 16)                272       
_________________________________________________________________
dense_12 (Dense)             (None, 1)                 17        
=================================================================
Total params: 1,713
Trainable params: 1,713
Non-trainable params: 0
_________________________________________________________________

結果

plt.figure(figsize=(14,10))

epochs_range = range(1, epochs + 1)

train_loss = history.history['loss']
val_loss = history.history['val_loss']

plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')

plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()

plt.show()

AV _ Healthcare Analytics II_60_0.png

model.evaluate(X_test, y_test)
204/204 [==============================] - 0s 1ms/step - loss: 0.3338 - acc: 0.8475 - auc: 0.9050





[0.33379316329956055, 0.8475356698036194, 0.9049904346466064]

過学習になる前のValidation lossが最も小さいときのepochsを割り出します

np.argmin(val_loss)
18

上記のepochsで学習を停止させると最も汎用的なモデルが得られます。

0
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?