0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

ラグランジュの未定乗数法 - 幾何的イメージプロット

Posted at

概要

プロット

今回、最小値を求める$f(x)$、拘束条件$g(x)$、$F(x, y, \lambda)$(動画と同じ)

\begin{align}
f(x) &= x^2 + y^2 \\
g(x) &= x + y - 1 = 0 \\
F(x, y, \lambda) &= f(x) - \lambda g(x) \\
&= (x^2 + y^2) - \lambda (x + y - 1)
\end{align}
  • $\lambda$を変化させたときの$z = F(x, y, \lambda)$を$0 \leq x \leq 1$、$0 \leq y \leq 1$でプロットすると以下のようになる
  • 確かに、$\lambda = 1$のときに拘束条件を満たす線上で接平面が水平になってそう
$\lambda$ グラフ
0.0 image.png
0.2 image.png
0.4 image.png
0.6 image.png
0.8 image.png
1.0 image.png
1.2 image.png
1.4 image.png
1.6 image.png
1.8 image.png
2.0 image.png
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?