19
16

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

強化学習フレームワーク Google Dopamine をつかってみた。

Last updated at Posted at 2018-09-02

はじめに

Google Brainチームが突如公開した強化学習フレームワークGoogle Dopamineをためしにつかってみよう!

Dopamineとは

特長

Dopamineとは、Google 2018/08/27に公開した強化学習アルゴリズムのフレームワーク。以下の4つの特長を有する。

  • Easy experimentation
    ユーザーがベンチマーク実験を簡単に実行できる。
  • Flexible development
    ユーザーが研究のアイデアを簡単に試すことができる。
  • Compact and reliable
    いくつかのテスト済みアルゴリズムの実装を提供する。
  • Reproducible
    結果の再現性を促進する。

ファイル構成

Dopamineのファイル構成は以下の通り。

  • agents
    エージェントの実装が含まれる。
  • atari
    実験や前処理コードを実行するコードを含むAtari固有のコードが含まれる。
  • common
    ロギングとチェックポイントを含む追加の便利機能が含まれる。
  • replay_memory
    ドーパミンで使用される再生メモリスキームが含まれる。
  • colab
    実験の結果を検査するためのコードと、サンプルのcolabノートが含まれる。
  • tests
    すべてのテストファイルが含まれる。

Dopamineのインストール

コンテナ実行

nvidia-dockerでtensorflowのコンテナを実行する。

nvidia-docker run -it tensorflow/tensorflow:latest-gpu-py3 /bin/bash

インストール

次にGoogle大先生のREADME.mdにしたがってインストール。

apt-get update
apt-get install -y cmake
pip install dopamine-rl
pip install atari-py

動作確認

Google大先生のREADME.mdを参考に動作確認しよう。

準備

まず、ソースをクローンする。

apt-get install -y git
git clone https://github.com/google/dopamine.git
cd dopamine

テスト

テストスクリプトを実行する。

# python tests/atari_init_test.py
Traceback (most recent call last):
  File "tests/atari_init_test.py", line 23, in <module>
    from dopamine.atari import train
  File "/usr/local/lib/python3.5/dist-packages/dopamine/atari/train.py", line 29, in <module>
    from dopamine.atari import run_experiment
  File "/usr/local/lib/python3.5/dist-packages/dopamine/atari/run_experiment.py", line 26, in <module>
    from dopamine.atari import preprocessing
  File "/usr/local/lib/python3.5/dist-packages/dopamine/atari/preprocessing.py", line 29, in <module>
    import cv2
  File "/usr/local/lib/python3.5/dist-packages/cv2/__init__.py", line 3, in <module>
    from .cv2 import *
ImportError: libSM.so.6: cannot open shared object file: No such file or directory

当然のようにエラー・・・解せぬ。
エラーが出てるcv2はopencv-python関係。有名なライブラリだけど依存関係めんどいよな・・・。
足りないライブラリをインストール。

apt install -y libsm6

再実行。

# python tests/atari_init_test.py 
Traceback (most recent call last):
  File "tests/atari_init_test.py", line 23, in <module>
    from dopamine.atari import train
  File "/usr/local/lib/python3.5/dist-packages/dopamine/atari/train.py", line 29, in <module>
    from dopamine.atari import run_experiment
  File "/usr/local/lib/python3.5/dist-packages/dopamine/atari/run_experiment.py", line 26, in <module>
    from dopamine.atari import preprocessing
  File "/usr/local/lib/python3.5/dist-packages/dopamine/atari/preprocessing.py", line 29, in <module>
    import cv2
  File "/usr/local/lib/python3.5/dist-packages/cv2/__init__.py", line 3, in <module>
    from .cv2 import *
ImportError: libXrender.so.1: cannot open shared object file: No such file or directory

当然のようにエラー・・・解せぬ。
足りないライブラリをインストール。

apt install -y libxrender1

再実行。

# python tests/atari_init_test.py 
/usr/local/lib/python3.5/dist-packages/gym/envs/registration.py:14: DeprecationWarning: Parameters to load are deprecated.  Call .resolve and .require separately.
  result = entry_point.load(False)
2018-09-01 23:25:27.437013: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
I0901 23:25:27.438280 140230154077952 tf_logging.py:115] Creating DQNAgent agent with the following parameters:
I0901 23:25:27.438604 140230154077952 tf_logging.py:115] 	 gamma: 0.990000
I0901 23:25:27.438693 140230154077952 tf_logging.py:115] 	 update_horizon: 1.000000
I0901 23:25:27.438756 140230154077952 tf_logging.py:115] 	 min_replay_history: 20000
I0901 23:25:27.438801 140230154077952 tf_logging.py:115] 	 update_period: 4
I0901 23:25:27.438845 140230154077952 tf_logging.py:115] 	 target_update_period: 8000
I0901 23:25:27.438887 140230154077952 tf_logging.py:115] 	 epsilon_train: 0.010000
I0901 23:25:27.438936 140230154077952 tf_logging.py:115] 	 epsilon_eval: 0.001000
I0901 23:25:27.438985 140230154077952 tf_logging.py:115] 	 epsilon_decay_period: 250000
I0901 23:25:27.439033 140230154077952 tf_logging.py:115] 	 tf_device: /gpu:0
I0901 23:25:27.439080 140230154077952 tf_logging.py:115] 	 use_staging: True
I0901 23:25:27.439127 140230154077952 tf_logging.py:115] 	 optimizer: <tensorflow.python.training.rmsprop.RMSPropOptimizer object at 0x7f89a0e27eb8>
I0901 23:25:27.440419 140230154077952 tf_logging.py:115] Creating a OutOfGraphReplayBuffer replay memory with the following parameters:
I0901 23:25:27.440495 140230154077952 tf_logging.py:115] 	 observation_shape: 84
I0901 23:25:27.440555 140230154077952 tf_logging.py:115] 	 stack_size: 4
I0901 23:25:27.440608 140230154077952 tf_logging.py:115] 	 replay_capacity: 100
I0901 23:25:27.440658 140230154077952 tf_logging.py:115] 	 batch_size: 32
I0901 23:25:27.440706 140230154077952 tf_logging.py:115] 	 update_horizon: 1
I0901 23:25:27.440754 140230154077952 tf_logging.py:115] 	 gamma: 0.990000
I0901 23:25:28.310365 140230154077952 tf_logging.py:115] Beginning training...
W0901 23:25:28.310532 140230154077952 tf_logging.py:125] num_iterations (0) < start_iteration(0)
..
----------------------------------------------------------------------
Ran 2 tests in 1.024s

OK

成功した。
・・・ん!なぜCPU使っている?GPUサポートのはず・・・。

tensorflowが認識しているデバイスを確認。

Python 3.5.2 (default, Nov 23 2017, 16:37:01) 
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from tensorflow.python.client import device_lib
>>> device_lib.list_local_devices()
2018-09-02 00:15:41.382144: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 11600111376506808747
]

GPUがなくなってる。解せぬ・・・。
最初はこうだったはずなんや。

[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 17574043989876159965
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 1403781120
locality {
  bus_id: 1
  links {
  }
}
incarnation: 3799542003315464865
physical_device_desc: "device: 0, name: Quadro K620, pci bus id: 0000:01:00.0, compute capability: 5.0"
]

どうもdopamineをインストールするときに依存関係のあるtensorflowが自動でインストールされてtensorflow-gpuがつかわれなくなるらしい。

# pip install dopamine-rl
Collecting dopamine-rl
  Downloading https://files.pythonhosted.org/packages/a3/60/ce40162119275f8961b79ee16d98038f4ca85c2b449daced3b5900952c27/dopamine_rl-1.0.2-py3-none-any.whl (65kB)
    100% |################################| 71kB 7.3MB/s 
Requirement already satisfied: absl-py>=0.2.2 in /usr/local/lib/python3.5/dist-packages (from dopamine-rl) (0.4.0)
(中略)
Collecting tensorflow (from dopamine-rl)
  Downloading https://files.pythonhosted.org/packages/50/83/4b61843f9438b4f27eb16b277e6320e38698144d8608f6281abbdd45532b/tensorflow-1.10.1-cp35-cp35m-manylinux1_x86_64.whl (58.4MB)
    100% |################################| 58.4MB 1.2MB/s 
(中略)

そこで、tensorflowをアンインストールしてtensorflow-gpuを再インストールする。

pip uninstall tensorflow tensorflow-gpu
pip install tensorflow-gpu

再度実行する。

# python tests/atari_init_test.py 
/usr/local/lib/python3.5/dist-packages/gym/envs/registration.py:14: DeprecationWarning: Parameters to load are deprecated.  Call .resolve and .require separately.
  result = entry_point.load(False)
2018-09-02 00:29:59.540394: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2018-09-02 00:29:59.597419: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2018-09-02 00:29:59.597877: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 with properties: 
name: Quadro K620 major: 5 minor: 0 memoryClockRate(GHz): 1.124
pciBusID: 0000:01:00.0
totalMemory: 1.95GiB freeMemory: 1.59GiB
2018-09-02 00:29:59.597894: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible gpu devices: 0
2018-09-02 00:30:00.129133: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-09-02 00:30:00.129164: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971]      0 
2018-09-02 00:30:00.129187: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0:   N 
2018-09-02 00:30:00.129377: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 1339 MB memory) -> physical GPU (device: 0, name: Quadro K620, pci bus id: 0000:01:00.0, compute capability: 5.0)
I0902 00:30:00.144526 140558848235264 tf_logging.py:115] Creating DQNAgent agent with the following parameters:
I0902 00:30:00.144884 140558848235264 tf_logging.py:115] 	 gamma: 0.990000
I0902 00:30:00.144986 140558848235264 tf_logging.py:115] 	 update_horizon: 1.000000
I0902 00:30:00.145088 140558848235264 tf_logging.py:115] 	 min_replay_history: 20000
I0902 00:30:00.145177 140558848235264 tf_logging.py:115] 	 update_period: 4
I0902 00:30:00.145226 140558848235264 tf_logging.py:115] 	 target_update_period: 8000
I0902 00:30:00.145297 140558848235264 tf_logging.py:115] 	 epsilon_train: 0.010000
I0902 00:30:00.145355 140558848235264 tf_logging.py:115] 	 epsilon_eval: 0.001000
I0902 00:30:00.145411 140558848235264 tf_logging.py:115] 	 epsilon_decay_period: 250000
I0902 00:30:00.145462 140558848235264 tf_logging.py:115] 	 tf_device: /gpu:0
I0902 00:30:00.145518 140558848235264 tf_logging.py:115] 	 use_staging: True
I0902 00:30:00.145569 140558848235264 tf_logging.py:115] 	 optimizer: <tensorflow.python.training.rmsprop.RMSPropOptimizer object at 0x7fd5d63d9ba8>
I0902 00:30:00.147667 140558848235264 tf_logging.py:115] Creating a OutOfGraphReplayBuffer replay memory with the following parameters:
I0902 00:30:00.147766 140558848235264 tf_logging.py:115] 	 observation_shape: 84
I0902 00:30:00.147877 140558848235264 tf_logging.py:115] 	 stack_size: 4
I0902 00:30:00.147933 140558848235264 tf_logging.py:115] 	 replay_capacity: 100
I0902 00:30:00.147994 140558848235264 tf_logging.py:115] 	 batch_size: 32
I0902 00:30:00.148046 140558848235264 tf_logging.py:115] 	 update_horizon: 1
I0902 00:30:00.148096 140558848235264 tf_logging.py:115] 	 gamma: 0.990000
I0902 00:30:01.003550 140558848235264 tf_logging.py:115] Beginning training...
W0902 00:30:01.003716 140558848235264 tf_logging.py:125] num_iterations (0) < start_iteration(0)
..
----------------------------------------------------------------------
Ran 2 tests in 1.632s

OK

GPUで実行できた。

学習

学習させてみる。

python -um dopamine.atari.train --agent_name=dqn --base_dir=/tmp/dopamine --gin_files='dopamine/agents/dqn/configs/dqn.gin'

一応、GPUが働いてるかどうかnvidiaのコマンドで確認する。

# nvidia-smi 
Sun Sep  2 09:37:18 2018       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.130                Driver Version: 384.130                   |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Quadro K620         Off  | 00000000:01:00.0  On |                  N/A |
| 60%   72C    P0    15W /  30W |   1898MiB /  1997MiB |     73%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      4481      C   python                                      1542MiB |
(中略)
+-----------------------------------------------------------------------------+

はたらいてるじゃねぇか。しかし、時間はかかる・・・。
ここで朝ごはんタイム:fork_and_knife:

参考サイト

19
16
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
19
16

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?