0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

karakuri-lm-70b-chatをOpenAI互換のローカルサーバとして動かしてみた
https://qiita.com/takaaki_inada/items/3a22b982a3541e6f214c

seed 1743075770)

Amazon Bedrockを利用して日本語だけで画像生成する
https://qiita.com/wadabee/items/d073238588d9022489cf

フロントエンドの処理で、ランダムにseedを設定しながら画像生成のリクエストを行なっています。

【Fine-Tuning】Llama3を使ってモデルを作ってみた②
https://qiita.com/TM_AIbucho/items/30039bcc582d614c25b8
seed=3407

Apple silicon専用機械学習フレームワークでLLMのファインチューニングをやってみた
https://qiita.com/asamiKA/items/3fdf89771084e3625643
https://qiita.com/katayohe/items/4059f9d0ce15ed3e4c09

--seed 42

JMED-LLM を Amazon Bedrock ( Claude 3.5 Sonnet, Claude 3 Haiku ) で評価してみた

seed: 42

LLMのイロレーティング2
https://qiita.com/nishiha/items/eeb6b6d96d3c8f660ffd

seed = 100

tidyverse/elmer パッケージでLLMを利用
https://qiita.com/zgmfx20a/items/d0435bf3de43a3c41cbe

seed = NULL,

N番煎じでGoogle Gemma-2 2B JPN-itとRinna社のGemma 2 Baku 2BをDatabricks Mosaic AI Model Servingで試す
https://qiita.com/isanakamishiro2/items/885219c81aee1e2aea04

self.seed = 123

N番煎じでQwen2.5をDatabricks Mosaic AI Model Serving上で試す
https://qiita.com/isanakamishiro2/items/c1857531174f893bafd2

"seed": 123

REF

vLLMによるLLM推論速度の向上
https://qiita.com/Yorozuya59/items/c1dd1234d2d965f7a1ca

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?