End-to-End Delay Minimization for Scientific Workflows in Clouds under Budget Constraint
https://ieeexplore.ieee.org/document/6898826/references#references
Reference
- Amazon EC2 [Online]. Available: http://aws.amazon.com/ec2/, 2014.
- Pegasus in the cloud [Online]. Available: http://pegasus.isi.edu/cloud, 2014.
- The Django framework [Online]. Available: http://www.djangoproject.com, 2014.
- WebGL [Online]. Available: http://get.webgl.org, 2014.
- [Online]. Available: http://www.wrf-model.org/index.php, 2014.
- WRF Preprocessing System (WPS) [Online]. Available: http://www.mmm.ucar.edu/wrf/users/wpsv2/wps.html, 2013.
- Nimbus cloud project [Online]. Available: http://www.nimbusproject.org, 2014.
- S. Abrishami and M. Naghibzadeh, “Deadline-constrained workflow scheduling in software as a service cloud,” Scientia Iranica, vol. 19, pp. 680–689, 2012.
- H. Arabnejad and J.G. Barbosa, “A budget constrained scheduling algorithm for workflow applications,” J. Grid Comput., pp. 1–15, 2014.
- R. Bajaj and D. Agrawal, “Improving scheduling of tasks in a heterogeneous environment,” IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 2, pp. 107–118, Feb. 2004.
- P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization, ” ACM SIGOPS Oper. Syst. Rev., vol. 37, pp. 164–177, 2003.
- R. N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya, “Cloudsim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, ” Softw.: Practice Exp., vol. 41, no. 1, pp. 23–50, 2011.
- Cascading, “Cascading: An application framework for developing robust data analytics and data management application on cloud computing cluster. http://www.cascading.org, 2012.
- W. Chen and E. Deelman, “Integration of workflow partitioning and resource provisioning,” in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., 2012, pp. 764–768.
- E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost of doing science on the cloud: The montage example,” in Proc. ACM/IEEE Conf. Supercomput., 2008, pp. 1–12.
- M. R. Garey, and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness. San Francisco, CA, USA : Freeman, 1979.
- J. Goecks, A. Nekrutenko, J. Taylor, and The Galaxy Team, “Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, ” Genome Biol, vol. 11, no. 8, p. R86, 2010.
- Y. Gu and Q. Wu, “Optimizing distributed computing workflows in heterogeneous network environments, ” in Proc. 11th Int. Conf. Distrib. Comput. Netw., Jan. 2010, pp. 142–154.
- Y. Gu, Q. Wu, and N.S.V. Rao, “Analyzing execution dynamics of scientific workflows for latency minimization in resource sharing environments, ” in Proc. 7th IEEE World Congr. Service, Jul. 2011, pp. 153–160.
- T. Hacker and K. Mahadik, “Flexible resource allocation for reliable virtual cluster computing systems,” in Proc. ACM/IEEE Supercomput. Conf., 2011, pp. 48:1–48:12.
- C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J. Good, “On the use of cloud computing for scientific workflows,” in Proc. 4th IEEE Int. Conf. eSci., 2008, pp. 640–645.
- D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn. (2006). Taverna: A tool for building and running workflows of services. Nucleic Acids Res. [Online]. 34, pp. 729–732. Available: http://www.taverna.org.uk
- J. Y. Jung and J. Bae, “Workflow clustering method based on process similarity, ” in Proc. Int. Conf. Comput. Sci. Its Appl., vol. 2, pp. 379–389, 2006.
- G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman, and P. Maechling, “Data sharing options for scientific workflows on amazon EC2,” in Proc. ACM/IEEE Int. Conf. High Perform. Comput., Netw., Storage Anal., 2010, pp. 1–9.
- X. Lin and C. Q. Wu, “On scientific workflow scheduling in clouds under budget constraint, ” in Proc. 42nd Int. Conf. Parallel Process., Lyon, France, Oct. 2013, pp. 90–99.
- M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet application deadlines in cloud workflows,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2011, pp. 49:1–49:12.
- M. Mao, J. Li, and H. Marty, “Cloud auto-scaling with deadline and budget constraints,” in Proc. 11th Int. Conf. Grid Comput., Oct. 2010, pp. 41–48.
- S. Martello, and P. Toth, Knapsack Problems: Algorithms and Computer Implementations. Hoboken, NJ, USA : Wiley, 1990.
- C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V. B. N. Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, and X. Wang, “Nova: Continuous Pig/Hadoop workflows, ” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 1081–1090.
- Apache Oozie, “Oozie: A workflow/coordination system to manage computing jobs,” http://incubator.apache.org/oozie, 2012.