数式処理ソフト Maxima
仮説(95) 確率論及統計論
https://qiita.com/kaizen_nagoya/items/89d0a91a56d33529e85c
「量子アニーリングの基礎」を読む
https://qiita.com/kaizen_nagoya/items/29580dc526e142cb64e9
の式の展開を埋めるため。
LaTeX/TeXの式を生成するため。
アナログ制御とデジタル制御の連結方法を検討するため。
その前段としてscilabとmaximaの連携を図りたい。
Toppers_JSPとScicos_lab(Scilabでも可)による組込みメカトロニクス制御シミュレーション 塩出 武(個人)
https://qiita.com/kaizen_nagoya/items/2aa0454c7bde7058e3f1
TOPPERS/箱庭 簡易デモ紹介
https://qiita.com/kanetugu2018/items/cf4f0a094419393fb500
の入力として、maxima -> scilab -> simulator
maxima -> latex
maxima -> XML -> ...
などなど。
maxima
http://maxima.sourceforge.net
https://sourceforge.net/projects/maxima/
「Download」を押す
「保存」を押す。
「実行」を押す。
「次へ」を押す。
契約条項に問題がなければ、「同意する」を押す。
「次へ」を押す
「次へ」を押す
「完了」を押す
「wxMaxima」を起動する。
「方程式」メニューの「方程式を解く」を押す。式を入力する。
ここでは
http://www.k-techlabo.org/www_maxima/maxima_main.pdf
p.10の2つめの式を入れる。
入力した式を編集したら、エラーが出た。
再入力。
「Maxima」ニューの「Tex出力」を選び張り付ける。
「編集」メニューでtextとしてコピーすればtexファイルになる。
mathml, latexもそれぞれ試した。
latexは余分な飾りが多かった。
#text としてコピー
tex(%)$
$$\left[ x=\left({{-1}\over{2}}-{{\sqrt{3}\,i}\over{2}}\right)\,
\left({{\sqrt{27\,a^2\,d^2+\left(4\,b^3-18\,a\,b\,c\right)\,d+4\,a\,
c^3-b^2\,c^2}}\over{2\,3^{{{3}\over{2}}}\,a^2}}+{{{{b\,c}\over{a\,a
}}-{{3\,d}\over{a}}}\over{6}}+{{\left(-1\right)\,b^3}\over{27\,a^3}}
\right)^{{{1}\over{3}}}-{{\left({{\sqrt{3}\,i}\over{2}}+{{-1}\over{2
}}\right)\,\left({{\left(-1\right)\,b^2}\over{9\,a^2}}+{{c}\over{3\,
a}}\right)}\over{\left({{\sqrt{27\,a^2\,d^2+\left(4\,b^3-18\,a\,b\,c
\right)\,d+4\,a\,c^3-b^2\,c^2}}\over{2\,3^{{{3}\over{2}}}\,a^2}}+{{
{{b\,c}\over{a\,a}}-{{3\,d}\over{a}}}\over{6}}+{{\left(-1\right)\,b^
3}\over{27\,a^3}}\right)^{{{1}\over{3}}}}}+{{\left(-1\right)\,b
}\over{3\,a}} , x=\left({{\sqrt{3}\,i}\over{2}}+{{-1}\over{2}}
\right)\,\left({{\sqrt{27\,a^2\,d^2+\left(4\,b^3-18\,a\,b\,c\right)
\,d+4\,a\,c^3-b^2\,c^2}}\over{2\,3^{{{3}\over{2}}}\,a^2}}+{{{{b\,c
}\over{a\,a}}-{{3\,d}\over{a}}}\over{6}}+{{\left(-1\right)\,b^3
}\over{27\,a^3}}\right)^{{{1}\over{3}}}-{{\left({{-1}\over{2}}-{{
\sqrt{3}\,i}\over{2}}\right)\,\left({{\left(-1\right)\,b^2}\over{9\,
a^2}}+{{c}\over{3\,a}}\right)}\over{\left({{\sqrt{27\,a^2\,d^2+
\left(4\,b^3-18\,a\,b\,c\right)\,d+4\,a\,c^3-b^2\,c^2}}\over{2\,3^{
{{3}\over{2}}}\,a^2}}+{{{{b\,c}\over{a\,a}}-{{3\,d}\over{a}}}\over{6
}}+{{\left(-1\right)\,b^3}\over{27\,a^3}}\right)^{{{1}\over{3}}}}}+
{{\left(-1\right)\,b}\over{3\,a}} , x=\left({{\sqrt{27\,a^2\,d^2+
\left(4\,b^3-18\,a\,b\,c\right)\,d+4\,a\,c^3-b^2\,c^2}}\over{2\,3^{
{{3}\over{2}}}\,a^2}}+{{{{b\,c}\over{a\,a}}-{{3\,d}\over{a}}}\over{6
}}+{{\left(-1\right)\,b^3}\over{27\,a^3}}\right)^{{{1}\over{3}}}-{{
{{\left(-1\right)\,b^2}\over{9\,a^2}}+{{c}\over{3\,a}}}\over{\left(
{{\sqrt{27\,a^2\,d^2+\left(4\,b^3-18\,a\,b\,c\right)\,d+4\,a\,c^3-b^
2\,c^2}}\over{2\,3^{{{3}\over{2}}}\,a^2}}+{{{{b\,c}\over{a\,a}}-{{3
\,d}\over{a}}}\over{6}}+{{\left(-1\right)\,b^3}\over{27\,a^3}}
\right)^{{{1}\over{3}}}}}+{{\left(-1\right)\,b}\over{3\,a}} \right] $$
#math MLとしてコピー
<math xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mtable>
<mlabeledtr columnalign="left">
<mtd>
<mtext/>
</mtd>
<mtd/>
</mlabeledtr>
</mtable>
<annotation encoding="application/x-maxima">(%i4) tex(%)$
$$\left[ x=\left({{-1}\over{2}}-{{\sqrt{3}\,i}\over{2}}\right)\,
\left({{\sqrt{27\,a^2\,d^2+\left(4\,b^3-18\,a\,b\,c\right)\,d+4\,a\,
c^3-b^2\,c^2}}\over{2\,3^{{{3}\over{2}}}\,a^2}}+{{{{b\,c}\over{a\,a
}}-{{3\,d}\over{a}}}\over{6}}+{{\left(-1\right)\,b^3}\over{27\,a^3}}
\right)^{{{1}\over{3}}}-{{\left({{\sqrt{3}\,i}\over{2}}+{{-1}\over{2
}}\right)\,\left({{\left(-1\right)\,b^2}\over{9\,a^2}}+{{c}\over{3\,
a}}\right)}\over{\left({{\sqrt{27\,a^2\,d^2+\left(4\,b^3-18\,a\,b\,c
\right)\,d+4\,a\,c^3-b^2\,c^2}}\over{2\,3^{{{3}\over{2}}}\,a^2}}+{{
{{b\,c}\over{a\,a}}-{{3\,d}\over{a}}}\over{6}}+{{\left(-1\right)\,b^
3}\over{27\,a^3}}\right)^{{{1}\over{3}}}}}+{{\left(-1\right)\,b
}\over{3\,a}} , x=\left({{\sqrt{3}\,i}\over{2}}+{{-1}\over{2}}
\right)\,\left({{\sqrt{27\,a^2\,d^2+\left(4\,b^3-18\,a\,b\,c\right)
\,d+4\,a\,c^3-b^2\,c^2}}\over{2\,3^{{{3}\over{2}}}\,a^2}}+{{{{b\,c
}\over{a\,a}}-{{3\,d}\over{a}}}\over{6}}+{{\left(-1\right)\,b^3
}\over{27\,a^3}}\right)^{{{1}\over{3}}}-{{\left({{-1}\over{2}}-{{
\sqrt{3}\,i}\over{2}}\right)\,\left({{\left(-1\right)\,b^2}\over{9\,
a^2}}+{{c}\over{3\,a}}\right)}\over{\left({{\sqrt{27\,a^2\,d^2+
\left(4\,b^3-18\,a\,b\,c\right)\,d+4\,a\,c^3-b^2\,c^2}}\over{2\,3^{
{{3}\over{2}}}\,a^2}}+{{{{b\,c}\over{a\,a}}-{{3\,d}\over{a}}}\over{6
}}+{{\left(-1\right)\,b^3}\over{27\,a^3}}\right)^{{{1}\over{3}}}}}+
{{\left(-1\right)\,b}\over{3\,a}} , x=\left({{\sqrt{27\,a^2\,d^2+
\left(4\,b^3-18\,a\,b\,c\right)\,d+4\,a\,c^3-b^2\,c^2}}\over{2\,3^{
{{3}\over{2}}}\,a^2}}+{{{{b\,c}\over{a\,a}}-{{3\,d}\over{a}}}\over{6
}}+{{\left(-1\right)\,b^3}\over{27\,a^3}}\right)^{{{1}\over{3}}}-{{
{{\left(-1\right)\,b^2}\over{9\,a^2}}+{{c}\over{3\,a}}}\over{\left(
{{\sqrt{27\,a^2\,d^2+\left(4\,b^3-18\,a\,b\,c\right)\,d+4\,a\,c^3-b^
2\,c^2}}\over{2\,3^{{{3}\over{2}}}\,a^2}}+{{{{b\,c}\over{a\,a}}-{{3
\,d}\over{a}}}\over{6}}+{{\left(-1\right)\,b^3}\over{27\,a^3}}
\right)^{{{1}\over{3}}}}}+{{\left(-1\right)\,b}\over{3\,a}} \right] $$</annotation>
</semantics>
</math>
latex としてコピー
\noindent
%%%%%%%%%%%%%%%
%%% INPUT:
\begin{minipage}[t]{4em}\color{red}\bf
(\% i4)
\end{minipage}
\begin{minipage}[t]{\textwidth}\color{blue}
tex(\%)\$
\end{minipage}
%%% OUTPUT:
\[\displaystyle \mbox{}\\\mbox{\$ \$ \backslash left[ x=\backslash left(\{\{-1\}\backslash over\{2\}\}-\{\{\backslash sqrt\{3\}\backslash ,i\}\backslash over\{2\}\}\backslash right)\backslash ,}\mbox{}\\\mbox{ \backslash left(\{\{\backslash sqrt\{27\backslash ,a\textasciicircum2\backslash ,d\textasciicircum2+\backslash left(4\backslash ,b\textasciicircum3-18\backslash ,a\backslash ,b\backslash ,c\backslash right)\backslash ,d+4\backslash ,a\backslash ,}\mbox{}\\\mbox{ c\textasciicircum3-b\textasciicircum2\backslash ,c\textasciicircum2\}\}\backslash over\{2\backslash ,3\textasciicircum\{\{\{3\}\backslash over\{2\}\}\}\backslash ,a\textasciicircum2\}\}+\{\{\{\{b\backslash ,c\}\backslash over\{a\backslash ,a}\mbox{}\\\mbox{ \}\}-\{\{3\backslash ,d\}\backslash over\{a\}\}\}\backslash over\{6\}\}+\{\{\backslash left(-1\backslash right)\backslash ,b\textasciicircum3\}\backslash over\{27\backslash ,a\textasciicircum3\}\}}\mbox{}\\\mbox{ \backslash right)\textasciicircum\{\{\{1\}\backslash over\{3\}\}\}-\{\{\backslash left(\{\{\backslash sqrt\{3\}\backslash ,i\}\backslash over\{2\}\}+\{\{-1\}\backslash over\{2}\mbox{}\\\mbox{ \}\}\backslash right)\backslash ,\backslash left(\{\{\backslash left(-1\backslash right)\backslash ,b\textasciicircum2\}\backslash over\{9\backslash ,a\textasciicircum2\}\}+\{\{c\}\backslash over\{3\backslash ,}\mbox{}\\\mbox{ a\}\}\backslash right)\}\backslash over\{\backslash left(\{\{\backslash sqrt\{27\backslash ,a\textasciicircum2\backslash ,d\textasciicircum2+\backslash left(4\backslash ,b\textasciicircum3-18\backslash ,a\backslash ,b\backslash ,c}\mbox{}\\\mbox{ \backslash right)\backslash ,d+4\backslash ,a\backslash ,c\textasciicircum3-b\textasciicircum2\backslash ,c\textasciicircum2\}\}\backslash over\{2\backslash ,3\textasciicircum\{\{\{3\}\backslash over\{2\}\}\}\backslash ,a\textasciicircum2\}\}+\{\{}\mbox{}\\\mbox{ \{\{b\backslash ,c\}\backslash over\{a\backslash ,a\}\}-\{\{3\backslash ,d\}\backslash over\{a\}\}\}\backslash over\{6\}\}+\{\{\backslash left(-1\backslash right)\backslash ,b\textasciicircum}\mbox{}\\\mbox{ 3\}\backslash over\{27\backslash ,a\textasciicircum3\}\}\backslash right)\textasciicircum\{\{\{1\}\backslash over\{3\}\}\}\}\}+\{\{\backslash left(-1\backslash right)\backslash ,b}\mbox{}\\\mbox{ \}\backslash over\{3\backslash ,a\}\} , x=\backslash left(\{\{\backslash sqrt\{3\}\backslash ,i\}\backslash over\{2\}\}+\{\{-1\}\backslash over\{2\}\}}\mbox{}\\\mbox{ \backslash right)\backslash ,\backslash left(\{\{\backslash sqrt\{27\backslash ,a\textasciicircum2\backslash ,d\textasciicircum2+\backslash left(4\backslash ,b\textasciicircum3-18\backslash ,a\backslash ,b\backslash ,c\backslash right)}\mbox{}\\\mbox{ \backslash ,d+4\backslash ,a\backslash ,c\textasciicircum3-b\textasciicircum2\backslash ,c\textasciicircum2\}\}\backslash over\{2\backslash ,3\textasciicircum\{\{\{3\}\backslash over\{2\}\}\}\backslash ,a\textasciicircum2\}\}+\{\{\{\{b\backslash ,c}\mbox{}\\\mbox{ \}\backslash over\{a\backslash ,a\}\}-\{\{3\backslash ,d\}\backslash over\{a\}\}\}\backslash over\{6\}\}+\{\{\backslash left(-1\backslash right)\backslash ,b\textasciicircum3}\mbox{}\\\mbox{ \}\backslash over\{27\backslash ,a\textasciicircum3\}\}\backslash right)\textasciicircum\{\{\{1\}\backslash over\{3\}\}\}-\{\{\backslash left(\{\{-1\}\backslash over\{2\}\}-\{\{}\mbox{}\\\mbox{ \backslash sqrt\{3\}\backslash ,i\}\backslash over\{2\}\}\backslash right)\backslash ,\backslash left(\{\{\backslash left(-1\backslash right)\backslash ,b\textasciicircum2\}\backslash over\{9\backslash ,}\mbox{}\\\mbox{ a\textasciicircum2\}\}+\{\{c\}\backslash over\{3\backslash ,a\}\}\backslash right)\}\backslash over\{\backslash left(\{\{\backslash sqrt\{27\backslash ,a\textasciicircum2\backslash ,d\textasciicircum2+}\mbox{}\\\mbox{ \backslash left(4\backslash ,b\textasciicircum3-18\backslash ,a\backslash ,b\backslash ,c\backslash right)\backslash ,d+4\backslash ,a\backslash ,c\textasciicircum3-b\textasciicircum2\backslash ,c\textasciicircum2\}\}\backslash over\{2\backslash ,3\textasciicircum\{}\mbox{}\\\mbox{ \{\{3\}\backslash over\{2\}\}\}\backslash ,a\textasciicircum2\}\}+\{\{\{\{b\backslash ,c\}\backslash over\{a\backslash ,a\}\}-\{\{3\backslash ,d\}\backslash over\{a\}\}\}\backslash over\{6}\mbox{}\\\mbox{ \}\}+\{\{\backslash left(-1\backslash right)\backslash ,b\textasciicircum3\}\backslash over\{27\backslash ,a\textasciicircum3\}\}\backslash right)\textasciicircum\{\{\{1\}\backslash over\{3\}\}\}\}\}+}\mbox{}\\\mbox{ \{\{\backslash left(-1\backslash right)\backslash ,b\}\backslash over\{3\backslash ,a\}\} , x=\backslash left(\{\{\backslash sqrt\{27\backslash ,a\textasciicircum2\backslash ,d\textasciicircum2+}\mbox{}\\\mbox{ \backslash left(4\backslash ,b\textasciicircum3-18\backslash ,a\backslash ,b\backslash ,c\backslash right)\backslash ,d+4\backslash ,a\backslash ,c\textasciicircum3-b\textasciicircum2\backslash ,c\textasciicircum2\}\}\backslash over\{2\backslash ,3\textasciicircum\{}\mbox{}\\\mbox{ \{\{3\}\backslash over\{2\}\}\}\backslash ,a\textasciicircum2\}\}+\{\{\{\{b\backslash ,c\}\backslash over\{a\backslash ,a\}\}-\{\{3\backslash ,d\}\backslash over\{a\}\}\}\backslash over\{6}\mbox{}\\\mbox{ \}\}+\{\{\backslash left(-1\backslash right)\backslash ,b\textasciicircum3\}\backslash over\{27\backslash ,a\textasciicircum3\}\}\backslash right)\textasciicircum\{\{\{1\}\backslash over\{3\}\}\}-\{\{}\mbox{}\\\mbox{ \{\{\backslash left(-1\backslash right)\backslash ,b\textasciicircum2\}\backslash over\{9\backslash ,a\textasciicircum2\}\}+\{\{c\}\backslash over\{3\backslash ,a\}\}\}\backslash over\{\backslash left(}\mbox{}\\\mbox{ \{\{\backslash sqrt\{27\backslash ,a\textasciicircum2\backslash ,d\textasciicircum2+\backslash left(4\backslash ,b\textasciicircum3-18\backslash ,a\backslash ,b\backslash ,c\backslash right)\backslash ,d+4\backslash ,a\backslash ,c\textasciicircum3-b\textasciicircum}\mbox{}\\\mbox{ 2\backslash ,c\textasciicircum2\}\}\backslash over\{2\backslash ,3\textasciicircum\{\{\{3\}\backslash over\{2\}\}\}\backslash ,a\textasciicircum2\}\}+\{\{\{\{b\backslash ,c\}\backslash over\{a\backslash ,a\}\}-\{\{3}\mbox{}\\\mbox{ \backslash ,d\}\backslash over\{a\}\}\}\backslash over\{6\}\}+\{\{\backslash left(-1\backslash right)\backslash ,b\textasciicircum3\}\backslash over\{27\backslash ,a\textasciicircum3\}\}}\mbox{}\\\mbox{ \backslash right)\textasciicircum\{\{\{1\}\backslash over\{3\}\}\}\}\}+\{\{\backslash left(-1\backslash right)\backslash ,b\}\backslash over\{3\backslash ,a\}\} \backslash right] \$ \$ }\mbox{}
\]
%%%%%%%%%%%%%%%
#参考資料(referrence)
「maxima 入門」入門(Macintosh編)
https://qiita.com/kaizen_nagoya/items/9eb552fcd9e1033c0879
「maxima 入門」入門(docker編)
https://qiita.com/kaizen_nagoya/items/5b4b4e09ee9e2fcf735b
sbcl 導入(docker/gcc編) エラー中
https://qiita.com/kaizen_nagoya/items/ad0e66cdbf4de0c3a5f5
maxima導入(docker/sbcl編) エラー中
https://qiita.com/kaizen_nagoya/items/3372c4a3f6ace6b55115
文書履歴(document history)
ver. 0.01 初稿 20191015 昼
ver. 0.02 追記 20191015 夕
最後までおよみいただきありがとうございました。
いいね 💚、フォローをお願いします。
Thank you very much for reading to the last sentence.
Please press the like icon 💚 and follow me for your happy life.