4
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

TensorFlow(超初心者)の備忘録的まとめ 第一弾

Posted at

#経緯
なんやかんやで機械学習をしなくてはいけなくなったため、やってみたものの奥深いっていうか、ごちゃごちゃしてきたためまとめてみた。
英語のドキュメントを読むこと多いから、英単語も載せていくよ
#知識レベル
取り敢えず、この記事は確率統計およびDeep Learningの基本的な知識があるものとして話を進める。Deep Learningについての知識は下の本を読んで理解していればいいかな。この本はすごくわかりやすいのでおすすめ。
[ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装]
(https://www.amazon.co.jp/ゼロから作るDeep-Learning-―Pythonで学ぶディープラーニングの理論と実装-斎藤-康毅/dp/4873117585)
#環境
macOS Mojave
Python 3.6.2
pip3 10.0.1
#正規分布(normal distribution)

##random_normal

tf.random_normal(
    shape,
    mean=0.0,
    stddev=1.0,
    dtype=tf.float32,
    seed=None,
    name=None
)

正規分布から乱数を出力する 

大体名前から引数の意味はわかると思うので省略する。seedは話が長くなりそうだから他の記事で書くかも...

####使用例

# -*- coding:utf-8 -*-
#!/usr/bin/env python3

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

sess = tf.InteractiveSession()
x = sess.run(tf.random_normal(shape=[20000],mean=0.0,stddev=1.0,dtype=tf.float32))
fig = plt.figure()

ax = fig.add_subplot(1,1,1)
ax.hist(x,bins=100)
ax.set_title('random_normal')
ax.set_xlabel('x')
ax.set_ylabel('y')

plt.show()

スクリーンショット 2018-10-31 21.20.14.png

##truncated_normal

tf.truncated_normal(
    shape,
    mean=0.0,
    stddev=1.0,
    dtype=tf.float32,
    seed=None,
    name=None
)

切断正規分布から乱数を出力する
標準偏差の2倍までを出力

####使用例

# -*- coding:utf-8 -*-
#!/usr/bin/env python3

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

sess = tf.InteractiveSession()
x = sess.run(tf.truncated_normal(shape=[20000],mean=0.0,stddev=1.0,dtype=tf.float32))
fig = plt.figure()

ax = fig.add_subplot(1,1,1)
ax.hist(x,bins=100)
ax.set_title('truncated_normal')
ax.set_xlabel('x')
ax.set_ylabel('y')

plt.show()

スクリーンショット 2018-11-01 0.11.31.png

##random_uniform

tf.random_uniform(
    shape,
    minval=0,
    maxval=None,
    dtype=tf.float32,
    seed=None,
    name=None
)

一様分布から乱数を出力する

####使用例

# -*- coding:utf-8 -*-
#!/usr/bin/env python3

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

sess = tf.InteractiveSession()
x = sess.run(tf.random_uniform(shape=[20000],minval=-1.0,maxval=1.0,dtype=tf.float32))
fig = plt.figure()

ax = fig.add_subplot(1,1,1)
ax.hist(x,bins=100)
ax.set_title('random_uniform')
ax.set_xlabel('x')
ax.set_ylabel('y')

plt.show()

スクリーンショット 2018-11-01 0.32.16.png

##matplotlibの解説を少し

plt.figure()

これで何も描かれていないウィンドウを作成。

add_subplot(nrows, ncols, index, **kwargs)

戻り値 : Axesのサブクラス
index : その図の場所
nrows = 2 , ncols = 3 の時

1 2 3
4 5 6
hist(x,bins=100)

ヒストグラムを作成。
bins : 棒の本数
詳しい説明はこちら

##InteractiveSession()とSession()の違い
random_uniformは次のようにして実装することも出来る

####使用例

# -*- coding:utf-8 -*-
#!/usr/bin/env python3

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt


x = tf.random_uniform(shape=[20000],minval=-1.0,maxval=1.0,dtype=tf.float32)
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
with tf.Session() as sess:
    y = x.eval()

ax.hist(y,bins=100)
ax.set_title('random_uniform')
ax.set_xlabel('x')
ax.set_ylabel('y')

plt.show()

さっきと違ってrun()がeval() InteractiveSession()がSessionになってる。
結論から言うと、どちらも同じ。
このサイト様が詳しく説明してくれてる。とても参考になりました。
Tensorflow run() vs eval() と InteractiveSession() vs Session()

#英単語

英語 日本語
normal distribution 正規分布
mean 平均
standard deviation 標準偏差
4
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?