0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Numpy

Posted at

このページでは次の設定が既に行われているものとして説明を進めます。

import numpy as np

N-d array

以下の説明では、次に定義する配列を使いまわします(接頭辞naはNdArrayのつもりです)。

na_0 = np.array([])
na_1 = np.array([1,1,1,1,1])
na_2 = np.array([2,2,2,2,2])
na_3 = np.array([3,3,3,3,3])

追加・削除

留意点はnumpyの追加・削除メソッドは、非破壊なので__代入__する必要がある。

append

na_1 = np.append(na_1, na_2)
print(na_1)
# array([1, 1, 1, 1, 1, 2, 2, 2, 2, 2])

na_1 = np.append(na_1, na_3)
print(na_1)
# array([1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3])

vstack

na_1 = np.vstack((na_1, na_2))
print(na_1)
# array([[1, 1, 1, 1, 1],
#        [2, 2, 2, 2, 2]])

na_1 = np.vstack((na_1, na_3))
print(na_1)
# array([[1, 1, 1, 1, 1],
#        [2, 2, 2, 2, 2],
#        [3, 3, 3, 3, 3]])

評価

空かどうか

>>> na_0 = np.array([])
>>> na_0.size == 0
True
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?