0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

AI×Pythonで「嫉妬」をデータ分析! 〜連載『嫉妬マニア』の感情データセット公開〜

Last updated at Posted at 2025-09-25

AIと人間の「嫉妬」を分析してみた 〜連載『嫉妬マニア』の感情データセット公開〜

English Summary

This article explains how to analyze the emotion of "jealousy" from the Fujinkoron.jp series "Jealousy Mania" using AI and Python. A sentiment dataset, created in collaboration with the author Nami Saito, is publicly available, allowing readers to analyze the data themselves using the provided Python code.

The article offers a CSV file and a PDF file containing data from 18 installments of the series. The dataset includes categories such as "direction of jealousy," "target of jealousy," and "structure of jealousy," demonstrating a multi-faceted analysis of the emotion.

Furthermore, the article introduces a specific analysis method using the Python library pandas. A code example shows how to read the CSV data, count the instances of each "structure of jealousy," and visualize the results in a bar graph. This practical article allows readers to experience the process of interpreting human emotions as data through the application of AI.

この記事では、婦人公論.jp『嫉妬マニア』(著者:斉藤ナミ)の連載18本から作成した感情データセットと、それを分析するためのPythonコードを公開します。本データセットの作成は、著者の斉藤ナミさんとの共同作業です。

なお、分析コードの作成は主にAI(LLM)と対話しながら進めました。 AIと一緒にデータを読み解く過程を楽しんでいただければ幸いです。

公開データ

スキーマ

列名 説明
番号 #1-#18
掲載日 YYYY/MM/DD
記事タイトル 正式タイトル
嫉妬の方向 本人→他者/他者→本人/双方向
分析対象 主体嫉妬/被嫉妬/概念探求
嫉妬の対象 総括ラベル(人物名に限定しない)
嫉妬の構造(3分類) ゼロサム/不可侵領域/正当性希求(=自己理想嫉妬など)
他の列も続く

再現コード(Python)

使い方の例

import pandas as pd

# CSVデータを直接読み込む
df = pd.read_csv("[https://raw.githubusercontent.com/junikematsu/shitto-mania-dic/main/%E2%97%86%2020250926%20shitto%20profile%201%E2%88%9218%20.csv](https://raw.githubusercontent.com/junikematsu/shitto-mania-dic/main/%E2%97%86%2020250926%20shitto%20profile%201%E2%88%9218%20.csv)")

# 嫉妬の構造ごとに件数を集計して、棒グラフで可視化
df.groupby("嫉妬の構造(3分類)").size().plot.bar()
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?