#概要
iPhoneのカメラの映像からのリアルタイム顔検出です。Swift等による実装例はありましたが、今回のものは Pythonista による実装です。といっても、ビデオデータの取得や顔検出の仕組みは iOS の機能そのままで Pythonista 経由で呼び出しているだけですが、検出後の処理を Python で実装できるので、応用のハードルが下がりそうです。
今回の実装では画面の回転には対応しておらず、iPhoneの画面は縦向きでロックした状態で、横長画面でしか正しく動きません。今後の課題です。
##環境
- Pythonista3 v3.2
- iPhone6
- iOS 12.1
##実行例
以下はMacの画面を今回のプログラムを使って写してみたものですが、21人分の顔を検出しています。
15.00fpsと表示されているのは、ビデオデータを受け取る処理が呼び出される頻度で、本来は30fpsなのですが、6フレーム毎に顔検出の処理を呼び出している影響で遅くなっているようです。
#Pythonista3プログラム
face_detector.py
# coding: utf-8
from objc_util import *
from ctypes import c_void_p
import ui
import time
# 全フレームを処理しようとすると動かなくなるのでこの程度で
FRAME_INTERVAL = 6 # 30fps / 6 = 5fps
frame_counter = 0
last_fps_time = time.time()
fps_counter = 0
AVCaptureSession = ObjCClass('AVCaptureSession')
AVCaptureDevice = ObjCClass('AVCaptureDevice')
AVCaptureDeviceInput = ObjCClass('AVCaptureDeviceInput')
AVCaptureVideoDataOutput = ObjCClass('AVCaptureVideoDataOutput')
AVCaptureVideoPreviewLayer = ObjCClass('AVCaptureVideoPreviewLayer')
CIImage = ObjCClass('CIImage')
CIDetector = ObjCClass('CIDetector')
dispatch_get_current_queue = c.dispatch_get_current_queue
dispatch_get_current_queue.restype = c_void_p
CMSampleBufferGetImageBuffer = c.CMSampleBufferGetImageBuffer
CMSampleBufferGetImageBuffer.argtypes = [c_void_p]
CMSampleBufferGetImageBuffer.restype = c_void_p
CVPixelBufferLockBaseAddress = c.CVPixelBufferLockBaseAddress
CVPixelBufferLockBaseAddress.argtypes = [c_void_p, c_int]
CVPixelBufferLockBaseAddress.restype = None
CVPixelBufferGetWidth = c.CVPixelBufferGetWidth
CVPixelBufferGetWidth.argtypes = [c_void_p]
CVPixelBufferGetWidth.restype = c_int
CVPixelBufferGetHeight = c.CVPixelBufferGetHeight
CVPixelBufferGetHeight.argtypes = [c_void_p]
CVPixelBufferGetHeight.restype = c_int
CVPixelBufferUnlockBaseAddress = c.CVPixelBufferUnlockBaseAddress
CVPixelBufferUnlockBaseAddress.argtypes = [c_void_p, c_int]
CVPixelBufferUnlockBaseAddress.restype = None
def captureOutput_didOutputSampleBuffer_fromConnection_(_self, _cmd, _output, _sample_buffer, _conn):
global frame_counter, fps_counter, last_fps_time
global image_width, image_height, faces
# 性能確認のためビデオデータの実 FPS 表示
fps_counter += 1
now = time.time()
if int(now) > int(last_fps_time):
label_fps.text = '{:5.2f} fps'.format((fps_counter) / (now - last_fps_time))
last_fps_time = now
fps_counter = 0
# 画像処理は FRAME_INTERVAL 間隔で処理
if frame_counter == 0:
# ビデオ画像のフレームデータを取得
imagebuffer = CMSampleBufferGetImageBuffer(_sample_buffer)
# バッファをロック
CVPixelBufferLockBaseAddress(imagebuffer, 0)
image_width = CVPixelBufferGetWidth(imagebuffer)
image_height = CVPixelBufferGetHeight(imagebuffer)
ciimage = CIImage.imageWithCVPixelBuffer_(ObjCInstance(imagebuffer))
# CIDetector により顔検出
options = {'CIDetectorAccuracy': 'CIDetectorAccuracyHigh'}
detector = CIDetector.detectorOfType_context_options_('CIDetectorTypeFace', None, options)
faces = detector.featuresInImage_(ciimage)
# バッファのロックを解放
CVPixelBufferUnlockBaseAddress(imagebuffer, 0)
# 検出した顔の情報を使って表示を更新
path_view.set_needs_display()
frame_counter = (frame_counter + 1) % FRAME_INTERVAL
class PathView(ui.View):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def draw(self):
# 検出した顔の輪郭に合わせて、表示を加工
if faces is not None and faces.count() != 0:
# 顔の部分を白く覆う
ui.set_color((1, 1, 1, 0.9))
for face in faces:
face_bounds = face.bounds()
# カメラの画像は X軸=1920 Y軸=1080
# View は X軸=375 Y軸=667
# 画像のX軸Y軸をViewのY軸X軸に対応させ、サイズを調整
x = face_bounds.origin.y * self.height / image_width
y = face_bounds.origin.x * self.width / image_height
w = face_bounds.size.height * self.height / image_width
h = face_bounds.size.width * self.width / image_height
path = ui.Path.oval(x, y, w * 1.3, h)
path.fill()
@on_main_thread
def main():
global path_view, label_fps, faces
# 画面の回転には対応しておらず
# iPhoneの画面縦向きでロックした状態で、横長画面で使う想定
# View のサイズは手持ちの iPhone6 に合わせたもの
faces = None
main_view = ui.View(frame=(0, 0, 375, 667))
path_view = PathView(frame=main_view.frame)
main_view.name = 'Face Detector'
sampleBufferDelegate = create_objc_class(
'sampleBufferDelegate',
methods=[captureOutput_didOutputSampleBuffer_fromConnection_],
protocols=['AVCaptureVideoDataOutputSampleBufferDelegate'])
delegate = sampleBufferDelegate.new()
session = AVCaptureSession.alloc().init()
device = AVCaptureDevice.defaultDeviceWithMediaType_('vide')
_input = AVCaptureDeviceInput.deviceInputWithDevice_error_(device, None)
if _input:
session.addInput_(_input)
else:
print('Failed to create input')
return
output = AVCaptureVideoDataOutput.alloc().init()
queue = ObjCInstance(dispatch_get_current_queue())
output.setSampleBufferDelegate_queue_(delegate, queue)
output.alwaysDiscardsLateVideoFrames = True
session.addOutput_(output)
session.sessionPreset = 'AVCaptureSessionPresetHigh' # 1920 x 1080
prev_layer = AVCaptureVideoPreviewLayer.layerWithSession_(session)
prev_layer.frame = ObjCInstance(main_view).bounds()
prev_layer.setVideoGravity_('AVLayerVideoGravityResizeAspectFill')
ObjCInstance(main_view).layer().addSublayer_(prev_layer)
# 性能確認のためビデオデータの実 FPS 表示
label_fps = ui.Label(frame=(0, 0, main_view.width, 30), flex='W', name='fps')
label_fps.background_color = (0, 0, 0, 0.5)
label_fps.text_color = 'white'
label_fps.text = ''
label_fps.alignment = ui.ALIGN_CENTER
main_view.add_subview(label_fps)
main_view.add_subview(path_view)
session.startRunning()
main_view.present('sheet')
main_view.wait_modal()
session.stopRunning()
delegate.release()
session.release()
output.release()
if __name__ == '__main__':
main()