1
1

More than 5 years have passed since last update.

線形代数のメモ

Posted at

線形代数のメモ

ベクトルの基本

n項の縦ベクトルの表記。

\boldsymbol{a}=
\left(
  \begin{array}{c}
    a_1 \\
    a_2 \\
    \vdots \\
    a_n
  \end{array}
\right)

ベクトルの和

単純にベクトル同士の成分の和。

\boldsymbol{a}+\boldsymbol{b}=
\left(
\begin{matrix}
a_{1}+b_{1}\\a_{2}+b_{2}\\\vdots\\a_{n}+b_{n}
\end{matrix}\right)

スカラー倍

c\boldsymbol{a}=
\left(
\begin{matrix}
ca_{1}\\ca_{2}\\\vdots\\ca_{n}
\end{matrix}\right)

ベクトルの内積

成分ごとの積の和。

\boldsymbol{a}\cdot\boldsymbol{b}=
\displaystyle \sum_{i=1}^{n} a_i b_i

要素積

ベクトルの各要素を掛け合わせたもの。

\boldsymbol{a}\odot\boldsymbol{b}=
\left(
  \begin{array}{c}
    a_1 b_1 \\
    a_2 b_2\\
    \vdots \\
    a_n a_n
  \end{array}
\right)

行列の基本

m×n行列

\begin{eqnarray}
\boldsymbol{A} = \left(
  \begin{array}{cccc}
    a_{ 11 } & a_{ 12 } & \ldots & a_{ 1n } \\
    a_{ 21 } & a_{ 22 } & \ldots & a_{ 2n } \\
    \vdots & \vdots & \ddots & \vdots \\
    a_{ m1 } & a_{ m2 } & \ldots & a_{ mn }
  \end{array}
\right)
\end{eqnarray}

次も同じ意味。

\boldsymbol{A}=\left(a_{ij}\right)

正方行列

行と列が同じ数の行列

\begin{eqnarray}
\boldsymbol{A} = \left(
  \begin{array}{ccc}
    a_{ 11 } & a_{ 12 } & \ldots & a_{ 1n } \\
    a_{ 21 } & a_{ 22 } & \ldots & a_{ 2n } \\
    \vdots & \vdots & \ddots & \vdots \\
    a_{ n1 } & a_{ n2 } & \ldots & a_{ nn }
  \end{array}
\right)
\end{eqnarray}

対角行列

対角成分以外が全て0の正方行列。

\begin{eqnarray}
\begin{pmatrix}
  a_{ 11 } &   &  & 0 \\
    & a_{ 22 } &  &   \\
    &   & \ddots &   \\
  0 &   &  & a_{ nn } 
\end{pmatrix}
\end{eqnarray}

単位行列

対角成分が全て1の対角行列。

\begin{eqnarray}
\begin{pmatrix}
  1 &   &  & 0 \\
    & 1 &  &   \\
    &   & \ddots &   \\
  0 &   &  & 1
\end{pmatrix}
\end{eqnarray}

行列の和

AとBはm×n行列として

\begin{eqnarray}
\boldsymbol{A} + \boldsymbol{B} = 
\left(a_{ij}+b_{ij}\right)=
\left(
  \begin{array}{cccc}
    a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1n}+b_{1n} \\
    a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2n}+b_{2n} \\
    \vdots & \vdots & \ddots & \vdots \\
    a_{m1}+b_{m1} & a_{m2}+b_{m2} & \ldots & a_{mn}+b_{mn}
  \end{array}
\right)
\end{eqnarray}

行列のスカラー倍

\begin{eqnarray}
c\boldsymbol{A} = 
\left(ca_{ij}\right)=
\left(
  \begin{array}{ccc}
    ca_{11} & ca_{12} & \ldots & ca_{1n} \\
    ca_{21} & ca_{22} & \ldots & ca_{2n} \\
    \vdots & \vdots & \ddots & \vdots \\
    ca_{n1} & ca_{n2} & \ldots & ca_{nn}
  \end{array}
\right)
\end{eqnarray}

行列の積

正則行列

転置行列

直交行列

行列式

逆行列

行列の計算の法則

固有ベクトルと固有値

対角化

続く

参考URL

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1