3
8

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

pytorchで自作データセットを用いる方法

Last updated at Posted at 2020-07-27

ここでは、pytorchで用意されているデータセット以外を用いる際のデータローダの作成方法を解説します。
今回はsklearnで用意されているデータセットを用います。

実装

import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torch import optim
from torch.utils.data import DataLoader, Dataset, TensorDataset

# MNISTデータセットの読み込み
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split

mnist_X, mnist_y = fetch_openml('mnist_784', version=1, data_home="./mnist", return_X_y=True)

X_all = mnist_X.astype(np.float32) / 255 # データを[0,1]に変換
y_all = mnist_y.astype(np.int32)

# 分割
X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, train_size=0.8, random_state=1)

print(X_train.shape) # (56000, 784)

X_train = X_train.reshape(len(X_train), 1, 28, 28).astype('float32')
X_test = X_test.reshape(len(X_test), 1, 28, 28).astype('float32')

y_train = y_train.astype('long')
y_test = y_test.astype('long')

train_set = TensorDataset(torch.from_numpy(X_train), torch.from_numpy(y_train))
test_set  = TensorDataset(torch.from_numpy(X_test), torch.from_numpy(y_test))

bs = 1000

train_loader = DataLoader(train_set, batch_size=bs, shuffle=True)
test_loader = DataLoader(test_set, batch_size=bs, shuffle=False)

解説

train_set = TensorDataset(torch.from_numpy(X_train), torch.from_numpy(y_train))
test_set  = TensorDataset(torch.from_numpy(X_test), torch.from_numpy(y_test))

ここでテンソルデータセットを作成しているが、入力画像データ(X)は (データ数、チャネル数、高さ、幅)に設定する必要がある。
そのため、

X_train = X_train.reshape(len(X_train), 1, 28, 28).astype('float32')
X_test = X_test.reshape(len(X_test), 1, 28, 28).astype('float32')

で変換している。
また、正解ラベルは

y_train = y_train.astype('long')
y_test = y_test.astype('long')

のようにlong型に設定する必要がある。

3
8
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
8

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?