87
77

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

最強のSemantic Segmentation「Deep lab v3 plus」を用いて自前データセットを学習させる

Last updated at Posted at 2018-07-18

0.0. 概要

最強のSemantic SegmentationのDeep lab v3 pulsを試してみる。

https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/rishizek/tensorflow-deeplab-v3-plus

0.1. Installation

これを読めばよい
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/installation.md

取りあえずCudaは9.0以上じゃないと動かないらしいので
Tensorflow 1.8, Cuda 9.0, CUDNN 7.0の環境で動かす。

git clone https://github.com/tensorflow/models.git
cd models/research/
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
cd deeplab/
python model_test.py
sh local_test.sh

私は異なるGPUを積んでいるので

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.130                Driver Version: 384.130                   |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Quadro 4000         Off  | 00000000:03:00.0  On |                  N/A |
| 40%   53C   P12    N/A /  N/A |    237MiB /  1977MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Quadro 4000         Off  | 00000000:04:00.0 Off |                  N/A |
| 40%   51C   P12    N/A /  N/A |    137MiB /  1984MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  GeForce GTX 108...  Off  | 00000000:22:00.0 Off |                  N/A |
| 44%   38C    P8    11W / 250W |      2MiB / 11172MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

こんな感じにプログラムを書き換えないと動かなかったです。

# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for DeepLab model and some helper functions."""

import tensorflow as tf

from deeplab import common
from deeplab import model

config = tf.ConfigProto(
    gpu_options=tf.GPUOptions(
        visible_device_list="1, 2"
    )
)

class DeeplabModelTest(tf.test.TestCase):

  def testScaleDimensionOutput(self):
    self.assertEqual(161, model.scale_dimension(321, 0.5))
    self.assertEqual(193, model.scale_dimension(321, 0.6))
    self.assertEqual(241, model.scale_dimension(321, 0.75))

  def testWrongDeepLabVariant(self):
    model_options = common.ModelOptions([])._replace(
        model_variant='no_such_variant')
    with self.assertRaises(ValueError):
      model._get_logits(images=[], model_options=model_options)

  def testBuildDeepLabv2(self):
    batch_size = 2
    crop_size = [41, 41]

    # Test with two image_pyramids.
    image_pyramids = [[1], [0.5, 1]]

    # Test two model variants.
    model_variants = ['xception_65', 'mobilenet_v2']

    # Test with two output_types.
    outputs_to_num_classes = {'semantic': 3,
                              'direction': 2}

    expected_endpoints = [['merged_logits'],
                          ['merged_logits',
                           'logits_0.50',
                           'logits_1.00']]
    expected_num_logits = [1, 3]

    for model_variant in model_variants:
      model_options = common.ModelOptions(outputs_to_num_classes)._replace(
          add_image_level_feature=False,
          aspp_with_batch_norm=False,
          aspp_with_separable_conv=False,
          model_variant=model_variant)

      for i, image_pyramid in enumerate(image_pyramids):
        g = tf.Graph()
        with g.as_default():
          with self.test_session(graph=g, config=config):
            inputs = tf.random_uniform(
                (batch_size, crop_size[0], crop_size[1], 3))
            outputs_to_scales_to_logits = model.multi_scale_logits(
                inputs, model_options, image_pyramid=image_pyramid)

            # Check computed results for each output type.
            for output in outputs_to_num_classes:
              scales_to_logits = outputs_to_scales_to_logits[output]
              self.assertListEqual(sorted(scales_to_logits.keys()),
                                   sorted(expected_endpoints[i]))

              # Expected number of logits = len(image_pyramid) + 1, since the
              # last logits is merged from all the scales.
              self.assertEqual(len(scales_to_logits), expected_num_logits[i])

  def testForwardpassDeepLabv3plus(self):
    crop_size = [33, 33]
    outputs_to_num_classes = {'semantic': 3}

    model_options = common.ModelOptions(
        outputs_to_num_classes,
        crop_size,
        output_stride=16
    )._replace(
        add_image_level_feature=True,
        aspp_with_batch_norm=True,
        logits_kernel_size=1,
        model_variant='mobilenet_v2')  # Employ MobileNetv2 for fast test.

    g = tf.Graph()
    with g.as_default():
      with self.test_session(graph=g, config=config) as sess:
        inputs = tf.random_uniform(
            (1, crop_size[0], crop_size[1], 3))
        outputs_to_scales_to_logits = model.multi_scale_logits(
            inputs,
            model_options,
            image_pyramid=[1.0])

        sess.run(tf.global_variables_initializer())
        outputs_to_scales_to_logits = sess.run(outputs_to_scales_to_logits)

        # Check computed results for each output type.
        for output in outputs_to_num_classes:
          scales_to_logits = outputs_to_scales_to_logits[output]
          # Expect only one output.
          self.assertEquals(len(scales_to_logits), 1)
          for logits in scales_to_logits.values():
            self.assertTrue(logits.any())


if __name__ == '__main__':
  tf.test.main()

もしくは以下で指定してもよい。
この場合、すべてのソースコードが固定のGPUで動作することになる。

$ export CUDA_VISIBLE_DEVICES="0"

0.2. Training

これを読めばよい
https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/pascal.md

取りあえずPASCAL VOC 2012で動かす。

これでPASCALをダウンロードできる。

cd models/research/deeplab/datasets
sh download_and_convert_voc2012.sh 

こちらのURLに
https://github.com/rishizek/tensorflow-deeplab-v3
以下のように書かれている。

Training
For training model, you first need to convert original data to the TensorFlow TFRecord format. This enables to accelerate training seep.

python create_pascal_tf_record.py --data_dir DATA_DIR \
                                  --image_data_dir IMAGE_DATA_DIR \
                                  --label_data_dir LABEL_DATA_DIR 

多分、shell scriptでtf_recordに変換してくれているのだろう。

フォルダ構成

+ datasets
  + pascal_voc_seg
    + VOCdevkit
      + VOC2012
        + JPEGImages
        + SegmentationClass
    + tfrecord
    + exp
      + train_on_train_set
        + train
        + eval
        + vis

trainingを実行

以下、フォーマット

cd models/research/
python deeplab/train.py \
    --logtostderr \
    --training_number_of_steps=30000 \
    --train_split="train" \
    --model_variant="xception_65" \
    --atrous_rates=6 \
    --atrous_rates=12 \
    --atrous_rates=18 \
    --output_stride=16 \
    --decoder_output_stride=4 \
    --train_crop_size=513 \
    --train_crop_size=513 \
    --train_batch_size=1 \
    --dataset="pascal_voc_seg" \
    --tf_initial_checkpoint=${PATH_TO_INITIAL_CHECKPOINT} \
    --train_logdir=${PATH_TO_TRAIN_DIR} \
    --dataset_dir=${PATH_TO_DATASET}

なお、ゼロベースから学習させるには

    # Start the training.
    slim.learning.train(
        train_tensor,
        logdir=FLAGS.train_logdir,
        log_every_n_steps=FLAGS.log_steps,
        master=FLAGS.master,
        number_of_steps=FLAGS.training_number_of_steps,
        is_chief=(FLAGS.task == 0),
        session_config=session_config,
        startup_delay_steps=startup_delay_steps,
      #  init_fn=train_utils.get_model_init_fn(
      #      FLAGS.train_logdir,
      #      FLAGS.tf_initial_checkpoint,
      #      FLAGS.initialize_last_layer,
      #      last_layers,
      #      ignore_missing_vars=True),
        summary_op=summary_op,
        save_summaries_secs=FLAGS.save_summaries_secs,
        save_interval_secs=FLAGS.save_interval_secs)

train.pyのCheckpointを読み込んでいる部分をコメントアウトすればよい。

0.3. Visualization

以下を実行する。

python "${WORK_DIR}"/vis.py \
  --logtostderr \
  --vis_split="val" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --vis_crop_size=513 \
  --vis_crop_size=513 \
  --checkpoint_dir="${TRAIN_LOGDIR}" \
  --vis_logdir="${VIS_LOGDIR}" \
  --dataset_dir="${PASCAL_DATASET}" \
  --max_number_of_iterations=1

次に以下を実行して表示

tensorboard --logdir ${VIS_LOGDIR}

1.0. オリジナルデータによる学習

1.1. 【事前知識】データ生成部

まずはlocal_test.shを見てみる。こんな表記がある。

# Go to datasets folder and download PASCAL VOC 2012 segmentation dataset.
DATASET_DIR="datasets"
cd "${WORK_DIR}/${DATASET_DIR}"
sh download_and_convert_voc2012.sh

sh download_and_convert_voc2012.shこいつでデータを変換していることがわかる。
次にこいつを見てみる。

BASE_URL="http://host.robots.ox.ac.uk/pascal/VOC/voc2012/"
FILENAME="VOCtrainval_11-May-2012.tar"

download_and_uncompress "${BASE_URL}" "${FILENAME}"

cd "${CURRENT_DIR}"

# Root path for PASCAL VOC 2012 dataset.
PASCAL_ROOT="${WORK_DIR}/VOCdevkit/VOC2012"

# Remove the colormap in the ground truth annotations.
SEG_FOLDER="${PASCAL_ROOT}/SegmentationClass"
SEMANTIC_SEG_FOLDER="${PASCAL_ROOT}/SegmentationClassRaw"

echo "Removing the color map in ground truth annotations..."
python ./remove_gt_colormap.py \
  --original_gt_folder="${SEG_FOLDER}" \
  --output_dir="${SEMANTIC_SEG_FOLDER}"

# Build TFRecords of the dataset.
# First, create output directory for storing TFRecords.
OUTPUT_DIR="${WORK_DIR}/tfrecord"
mkdir -p "${OUTPUT_DIR}"

IMAGE_FOLDER="${PASCAL_ROOT}/JPEGImages"
LIST_FOLDER="${PASCAL_ROOT}/ImageSets/Segmentation"

echo "Converting PASCAL VOC 2012 dataset..."
python ./build_voc2012_data.py \
  --image_folder="${IMAGE_FOLDER}" \
  --semantic_segmentation_folder="${SEMANTIC_SEG_FOLDER}" \
  --list_folder="${LIST_FOLDER}" \
  --image_format="jpg" \
  --output_dir="${OUTPUT_DIR}"

データをダウンロードした後に、build_voc2012_data.pyでtf.recordの形式に変換していることがわかる。build_voc2012_data.pyはこんな感じのソースコード。

def _convert_dataset(dataset_split):
  """Converts the specified dataset split to TFRecord format.

  Args:
    dataset_split: The dataset split (e.g., train, test).

  Raises:
    RuntimeError: If loaded image and label have different shape.
  """
  dataset = os.path.basename(dataset_split)[:-4]
  sys.stdout.write('Processing ' + dataset)
  filenames = [x.strip('\n') for x in open(dataset_split, 'r')]
  num_images = len(filenames)
  num_per_shard = int(math.ceil(num_images / float(_NUM_SHARDS)))

  image_reader = build_data.ImageReader('jpeg', channels=3)
  label_reader = build_data.ImageReader('png', channels=1)

  for shard_id in range(_NUM_SHARDS):
    output_filename = os.path.join(
        FLAGS.output_dir,
        '%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS))
    with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
      start_idx = shard_id * num_per_shard
      end_idx = min((shard_id + 1) * num_per_shard, num_images)
      for i in range(start_idx, end_idx):
        sys.stdout.write('\r>> Converting image %d/%d shard %d' % (
            i + 1, len(filenames), shard_id))
        sys.stdout.flush()
        # Read the image.
        image_filename = os.path.join(
            FLAGS.image_folder, filenames[i] + '.' + FLAGS.image_format)
        image_data = tf.gfile.FastGFile(image_filename, 'rb').read()
        height, width = image_reader.read_image_dims(image_data)
        # Read the semantic segmentation annotation.
        seg_filename = os.path.join(
            FLAGS.semantic_segmentation_folder,
            filenames[i] + '.' + FLAGS.label_format)
        seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read()
        seg_height, seg_width = label_reader.read_image_dims(seg_data)
        if height != seg_height or width != seg_width:
          raise RuntimeError('Shape mismatched between image and label.')
        # Convert to tf example.
        example = build_data.image_seg_to_tfexample(
            image_data, filenames[i], height, width, seg_data)
        tfrecord_writer.write(example.SerializeToString())
    sys.stdout.write('\n')
    sys.stdout.flush()


def main(unused_argv):
  dataset_splits = tf.gfile.Glob(os.path.join(FLAGS.list_folder, '*.txt'))
  for dataset_split in dataset_splits:
    _convert_dataset(dataset_split)


if __name__ == '__main__':
  tf.app.run()

まずは、FLAGS.list_folderから学習データを見ているみたい。datasets/pascal_voc_seg/VOCdevkit/VOC2012/ImageSets/Segmentation$を見てみると、以下のファイルがある。

train.txt
trainval.txt
val.txt

train.txtにはこんな感じの内容が書いてある。

2007_000032
2007_000039
2007_000063
2007_000068
2007_000121
2007_000170
2007_000241
2007_000243
2007_000250
2007_000256
2007_000333
2007_000363
2007_000364
2007_000392
2007_000480
2007_000504
2007_000515
2007_000528
2007_000549
2007_000584

ラベルデータの生成は、SegmentationClassフォルダの画像の色を全部消して、エッジ検出のみをした画像を生成する。なお、エッジの内部には各ラベルの色がグレースケールで書き込まれている。それがSegmentationClassRaw。これがラベルデータとなる。

実際tf.recordに変換しているプログラムを動作させるにはこんな感じ。

python ./build_voc2012_data.py \
  --image_folder="./pascal_voc_seg/VOCdevkit/VOC2012/JPEGImages" \
  --semantic_segmentation_folder="./pascal_voc_seg/VOCdevkit/VOC2012/SegmentationClassRaw" \
  --list_folder="./pascal_voc_seg/VOCdevkit/VOC2012/ImageSets/Segmentation" \
  --image_format="jpg" \
  --output_dir="./pascal_voc_seg/tfrecord"

次にtrain.pyの中身を見ていると、こんな表記が。

  # Get dataset-dependent information.
  dataset = segmentation_dataset.get_dataset(
      FLAGS.dataset, FLAGS.train_split, dataset_dir=FLAGS.dataset_dir)

segmentation_dataset.pyを見てみると、tf.recordをデコードしているみたい。

このコンフィグファイルを使っていることがわかる。

_PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
        'train': 1464,
        'trainval': 2913,
        'val': 1449,
    },
    num_classes=21,
    ignore_label=255,
)

データ生成部を見るに、num_classesが識別する物体の種類
ignore_labelが物体を識別する線。これはクラスではなく境界なのでのぞく。
255は白色という意味。Labelデータは1channelで読み込んでいるので、グレースケール値であることがわかる。

次にtrain.pyの中身を見ていると、こんな表記が。

      samples = input_generator.get(
          dataset,
          FLAGS.train_crop_size,
          clone_batch_size,
          min_resize_value=FLAGS.min_resize_value,
          max_resize_value=FLAGS.max_resize_value,
          resize_factor=FLAGS.resize_factor,
          min_scale_factor=FLAGS.min_scale_factor,
          max_scale_factor=FLAGS.max_scale_factor,
          scale_factor_step_size=FLAGS.scale_factor_step_size,
          dataset_split=FLAGS.train_split,
          is_training=True,
          model_variant=FLAGS.model_variant)
      inputs_queue = prefetch_queue.prefetch_queue(
          samples, capacity=128 * config.num_clones)

input_generator.pyを見てみるとこんな表記が。
ここで最終的なデータを作成しているっぽい

  original_image, image, label = input_preprocess.preprocess_image_and_label(
      image,
      label,
      crop_height=crop_size[0],
      crop_width=crop_size[1],
      min_resize_value=min_resize_value,
      max_resize_value=max_resize_value,
      resize_factor=resize_factor,
      min_scale_factor=min_scale_factor,
      max_scale_factor=max_scale_factor,
      scale_factor_step_size=scale_factor_step_size,
      ignore_label=dataset.ignore_label,
      is_training=is_training,
      model_variant=model_variant)
  sample = {
      common.IMAGE: image,
      common.IMAGE_NAME: image_name,
      common.HEIGHT: height,
      common.WIDTH: width
  }

ここまでわかれば、オリジナルデータを用いて学習ができる。

1.2. オリジナルデータの作成

genData.py
from PIL import Image, ImageDraw
import random

gen_num = 800
img_dir_gen = "./img/"
lbl_dir_gen = "./lbl/"

img_x_size =512
img_y_size = 256

rect_x_size = 50
rect_y_size = 50

def get_rand_color():
  return (random.randrange(255), random.randrange(255), random.randrange(255))

def get_rand_color2():
  x = random.randrange(255)
  return (x, x, x)

for i in range (gen_num):
  im = Image.new('RGB', (img_x_size, img_y_size), get_rand_color())
  draw = ImageDraw.Draw(im)

  # Image
  px = random.randrange(img_x_size - rect_x_size)
  py = random.randrange(img_y_size - rect_y_size)
  draw.rectangle((px, py, px + rect_x_size, py + rect_y_size), fill=get_rand_color(), outline=(255, 255, 255))

  px2 = random.randrange(img_x_size - rect_x_size)
  py2 = random.randrange(img_y_size - rect_y_size)
  draw.ellipse((px2, py2, px2 + rect_x_size, py2 + rect_y_size), fill=get_rand_color(), outline=(255, 255, 255))

  im.save(img_dir_gen + str(i) + ".png", quality = 100)

  # Label
  im = Image.new('RGB', (img_x_size, img_y_size), (0, 0, 0))
  draw = ImageDraw.Draw(im)
  draw.rectangle((px, py, px + rect_x_size, py + rect_y_size), fill=(1, 1, 1), outline=(255, 255, 255))
  draw.ellipse((px2, py2, px2 + rect_x_size, py2 + rect_y_size), fill=(2, 2, 2), outline=(255, 255, 255))

  im.save(lbl_dir_gen + str(i) + ".png", quality = 100)

まずはこんな感じで、以下のようなデータを作る。

image.png

矩形が1で、丸が2となっている。背景が0である。
このため、クラスは3つ。255は白い線で除外対象。

次にファイル名を書いたテキストファイルを作成し、

train.txt
0
1
2
3
4
...

以下のようなフォルダ構成で配置する。

*data
 - img
 - lbl
 - lst

1.3. TFレコードの作成

build_voc2012_data.pyを以下のように変更する

build_voc2012_data.py
tf.app.flags.DEFINE_string(
    'semantic_segmentation_folder',
    './pascal_voc_seg/VOCdevkit/VOC2012/SegmentationClassRaw',
    'Folder containing semantic segmentation annotations.')

tf.app.flags.DEFINE_string(
    'list_folder',
    './pascal_voc_seg/VOCdevkit/VOC2012/ImageSets/Segmentation',
    'Folder containing lists for training and validation')

tf.app.flags.DEFINE_string(
    'output_dir',
    './pascal_voc_seg/tfrecord',
    'Path to save converted SSTable of TensorFlow examples.')

_NUM_SHARDS = 4

FLAGS.image_folder = "/datagen/data/img"
FLAGS.semantic_segmentation_folder = "/datagen/data/lbl"
FLAGS.list_folder = "/datagen/data/lst"
FLAGS.image_format = "png"

def _convert_dataset(dataset_split):
  """Converts the specified dataset split to TFRecord format.

  Args:
    dataset_split: The dataset split (e.g., train, test).

  Raises:
    RuntimeError: If loaded image and label have different shape.
  """

FLGASに作成したデータのディレクトリを入れるだけ。
あとは実行。そうするとTFレコードができあがる。

1.4. データセットの追加

segmentation_dataset.pyに以下を追加する

segmentation_dataset.py
_ORIGINAL_INFORMATION = DatasetDescriptor(
    splits_to_sizes={
        'train': 300,
        'trainval': 300,
        'val': 300,
    },
    num_classes=3,
    ignore_label=255,
)

...

_DATASETS_INFORMATION = {
    'cityscapes': _CITYSCAPES_INFORMATION,
    'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION,
    'ade20k': _ADE20K_INFORMATION,
    'original': _ORIGINAL_INFORMATION
}

1.5. 学習

あとは、datasetフラグにoriginalを入れて、学習させるだけ!

python train.py   --logtostderr   --train_split=trainval   --model_variant=xception_65   --atrous_rates=6   --atrous_rates=12   --atrous_rates=18   --output_stride=16   --decoder_output_stride=4   --train_crop_size=513   --train_crop_size=513   --train_batch_size=10   --training_number_of_steps=6000   --fine_tune_batch_norm=true   --tf_initial_checkpoint="./datasets/pascal_voc_seg/init_models/deeplabv3_pascal_train_aug/model.ckpt"  --train_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord" --dataset=original

なお、学習は激遅・・・。気長に待ちましょう。
Titan2枚でも1日は余裕でかかる。

1.6. 学習結果の表示

以下を実行するだけ!

python vis.py   --logtostderr   --vis_split="val"   --model_variant="xception_65"   --atrous_rates=6   --atrous_rates=12   --atrous_rates=18   --output_stride=16   --decoder_output_stride=4   --vis_crop_size=513   --vis_crop_size=513   --checkpoint_dir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/train"   --vis_logdir="./datasets/pascal_voc_seg/exp/train_on_trainval_set/vis"  --dataset_dir="./datasets/pascal_voc_seg/tfrecord"   --max_number_of_iterations=1 --dataset=original
87
77
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
87
77

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?