Help us understand the problem. What is going on with this article?

M5Stackで画面キャプチャーを取得する

はじめに

QiitaなどでM5Stackの画面を投稿するのに、画面キャプチャーが欲しいですよね。でも残念ながらM5Stackの標準機能にはないようです。私が、仕事で関わっているRecord Meetingという自動議事メモ作成サービスでは、独自のスマートスピーカーのUIとしてM5Stackを使っていて、色んな場面でキャプチャーが必要なんですが、これまで画面をスマホ等で撮影して対応しており、きれいに撮影するのに苦労していました。

COET Record Meeting

実は、M5Stackのライブラリの中にスクリーンキャプチャを行うサンプルがあるんですが、そのままでは動作しませんでした。https://github.com/m5stack/M5Stack/blob/master/examples/Advanced/Display/TFT_Screen_Capture/TFT_Screen_Capture.ino
これは、M5Stackが取り込んでいるTFT_eSPIのサンプルがそのままコピーされたもので、取り込まれているTFT_eSPIが古いため手を入れないといけませんでした。(検索してもまったく情報がないので、誰も使っていないのかもしれません)

元のサンプルはシリアル接続やProcessingなどを使うもので単体では使えず少し不便でした。そこで、キャプチャーするとM5StackのmicroSDカードに保存するようなツールを作ってみました。PNGやBMPなどの画像形式を作成する良いライブラリがなかったので、BMPフォーマットを自分で作成するようにしています。

実装方法

プロジェクトのlibフォルダー下にTFT_eSPIを配置します。肝心なのは、こちらのUser_Setup.hをM5Stack用に設定するところです。

User_Setup.h
//                            USER DEFINED SETTINGS
//   Set driver type, fonts to be loaded, pins used and SPI control method etc
//
//   See the User_Setup_Select.h file if you wish to be able to define multiple
//   setups and then easily select which setup file is used by the compiler.
//
//   If this file is edited correctly then all the library example sketches should
//   run without the need to make any more changes for a particular hardware setup!
//   Note that some sketches are designed for a particular TFT pixel width/height


// ##################################################################################
//
// Section 1. Call up the right driver file and any options for it
//
// ##################################################################################

// Only define one driver, the other ones must be commented out
#define ILI9341_DRIVER
//#define ST7735_DRIVER      // Define additional parameters below for this display
//#define ILI9163_DRIVER     // Define additional parameters below for this display
//#define S6D02A1_DRIVER
//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI
//#define HX8357D_DRIVER
//#define ILI9481_DRIVER
//#define ILI9486_DRIVER
//#define ILI9488_DRIVER     // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)
//#define ST7789_DRIVER      // Full configuration option, define additional parameters below for this display
//#define ST7789_2_DRIVER    // Minimal configuration option, define additional parameters below for this display
//#define R61581_DRIVER
//#define RM68140_DRIVER

// Some displays support SPI reads via the MISO pin, other displays have a single
// bi-directional SDA pin and the library will try to read this via the MOSI line.
// To use the SDA line for reading data from the TFT uncomment the following line:

#define TFT_SDA_READ      // This option is for ESP32 ONLY, tested with ST7789 display only

// For ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display
// Try ONE option at a time to find the correct colour order for your display

//  #define TFT_RGB_ORDER TFT_RGB  // Colour order Red-Green-Blue
#define TFT_RGB_ORDER TFT_BGR  // Colour order Blue-Green-Red

// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below

#define M5STACK

// For ST7789, ST7735 and ILI9163 ONLY, define the pixel width and height in portrait orientation
// #define TFT_WIDTH  80
// #define TFT_WIDTH  128
// #define TFT_WIDTH  240 // ST7789 240 x 240 and 240 x 320
// #define TFT_HEIGHT 160
// #define TFT_HEIGHT 128
// #define TFT_HEIGHT 240 // ST7789 240 x 240
// #define TFT_HEIGHT 320 // ST7789 240 x 320

// For ST7735 ONLY, define the type of display, originally this was based on the
// colour of the tab on the screen protector film but this is not always true, so try
// out the different options below if the screen does not display graphics correctly,
// e.g. colours wrong, mirror images, or tray pixels at the edges.
// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this
// this User_Setup file, then rebuild and upload the sketch to the board again:

// #define ST7735_INITB
// #define ST7735_GREENTAB
// #define ST7735_GREENTAB2
// #define ST7735_GREENTAB3
// #define ST7735_GREENTAB128    // For 128 x 128 display
// #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)
// #define ST7735_REDTAB
// #define ST7735_BLACKTAB
// #define ST7735_REDTAB160x80   // For 160 x 80 display with 24 pixel offset

// If colours are inverted (white shows as black) then uncomment one of the next
// 2 lines try both options, one of the options should correct the inversion.

#define TFT_INVERSION_ON
// #define TFT_INVERSION_OFF

// If a backlight control signal is available then define the TFT_BL pin in Section 2
// below. The backlight will be turned ON when tft.begin() is called, but the library
// needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be
// driven with a PWM signal or turned OFF/ON then this must be handled by the user
// sketch. e.g. with digitalWrite(TFT_BL, LOW);

// #define TFT_BACKLIGHT_ON HIGH  // HIGH or LOW are options

// ##################################################################################
//
// Section 2. Define the pins that are used to interface with the display here
//
// ##################################################################################

// We must use hardware SPI, a minimum of 3 GPIO pins is needed.
// Typical setup for ESP8266 NodeMCU ESP-12 is :
//
// Display SDO/MISO  to NodeMCU pin D6 (or leave disconnected if not reading TFT)
// Display LED       to NodeMCU pin VIN (or 5V, see below)
// Display SCK       to NodeMCU pin D5
// Display SDI/MOSI  to NodeMCU pin D7
// Display DC (RS/AO)to NodeMCU pin D3
// Display RESET     to NodeMCU pin D4 (or RST, see below)
// Display CS        to NodeMCU pin D8 (or GND, see below)
// Display GND       to NodeMCU pin GND (0V)
// Display VCC       to NodeMCU 5V or 3.3V
//
// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin
//
// The DC (Data Command) pin may be labeled AO or RS (Register Select)
//
// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more
// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS
// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin
// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.
//
// The NodeMCU D0 pin can be used for RST
//
//
// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin
// If 5V is not available at a pin you can use 3.3V but backlight brightness
// will be lower.


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######

// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation
//#define TFT_CS   PIN_D8  // Chip select control pin D8
//#define TFT_DC   PIN_D3  // Data Command control pin
//#define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST  -1    // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V

//#define TFT_BL PIN_D1  // LED back-light (only for ST7789 with backlight control pin)

//#define TOUCH_CS PIN_D2     // Chip select pin (T_CS) of touch screen

//#define TFT_WR PIN_D2       // Write strobe for modified Raspberry Pi TFT only


// ######  FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES  ######

// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact
// but saves pins for other functions.
// Use NodeMCU SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode

// In ESP8266 overlap mode the following must be defined
//#define TFT_SPI_OVERLAP

// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3
//#define TFT_CS   PIN_D3
//#define TFT_DC   PIN_D5  // Data Command control pin
//#define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)
//#define TFT_RST  -1  // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V


// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP   ######

// For ESP32 Dev board (only tested with ILI9341 display)
// The hardware SPI can be mapped to any pins

//#define TFT_MISO 19
//#define TFT_MOSI 23
//#define TFT_SCLK 18
//#define TFT_CS   15  // Chip select control pin
//#define TFT_DC    2  // Data Command control pin
//#define TFT_RST   4  // Reset pin (could connect to RST pin)
//#define TFT_RST  -1  // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST

//#define TFT_BL   32  // LED back-light (only for ST7789 with backlight control pin)

//#define TOUCH_CS 21     // Chip select pin (T_CS) of touch screen

//#define TFT_WR 22    // Write strobe for modified Raspberry Pi TFT only

// For the M5Stack module use these #define lines
#define TFT_MISO 19
//#define TFT_MISO -1
#define TFT_MOSI 23
#define TFT_SCLK 18
#define TFT_CS   14  // Chip select control pin
#define TFT_DC   27  // Data Command control pin
#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)
#define TFT_BL   32  // LED back-light (required for M5Stack)

// ######       EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP        ######

// The library supports 8 bit parallel TFTs with the ESP32, the pin
// selection below is compatible with ESP32 boards in UNO format.
// Wemos D32 boards need to be modified, see diagram in Tools folder.
// Only ILI9481 and ILI9341 based displays have been tested!

// Parallel bus is only supported on ESP32
// Uncomment line below to use ESP32 Parallel interface instead of SPI

//#define ESP32_PARALLEL

// The ESP32 and TFT the pins used for testing are:
//#define TFT_CS   33  // Chip select control pin (library pulls permanently low
//#define TFT_DC   15  // Data Command control pin - must use a pin in the range 0-31
//#define TFT_RST  32  // Reset pin, toggles on startup

//#define TFT_WR    4  // Write strobe control pin - must use a pin in the range 0-31
//#define TFT_RD    2  // Read strobe control pin

//#define TFT_D0   12  // Must use pins in the range 0-31 for the data bus
//#define TFT_D1   13  // so a single register write sets/clears all bits.
//#define TFT_D2   26  // Pins can be randomly assigned, this does not affect
//#define TFT_D3   25  // TFT screen update performance.
//#define TFT_D4   17
//#define TFT_D5   16
//#define TFT_D6   27
//#define TFT_D7   14


// ##################################################################################
//
// Section 3. Define the fonts that are to be used here
//
// ##################################################################################

// Comment out the #defines below with // to stop that font being loaded
// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not
// normally necessary. If all fonts are loaded the extra FLASH space required is
// about 17Kbytes. To save FLASH space only enable the fonts you need!

#define LOAD_GLCD   // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH
#define LOAD_FONT2  // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters
#define LOAD_FONT4  // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters
#define LOAD_FONT6  // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm
#define LOAD_FONT7  // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.
#define LOAD_FONT8  // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.
//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT
#define LOAD_GFXFF  // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts

// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded
// this will save ~20kbytes of FLASH
#define SMOOTH_FONT


// ##################################################################################
//
// Section 4. Other options
//
// ##################################################################################

// Define the SPI clock frequency, this affects the graphics rendering speed. Too
// fast and the TFT driver will not keep up and display corruption appears.
// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails
// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)
// With an ILI9163 display 27 MHz works OK.
// The RPi typically only works at 20MHz maximum.

// #define SPI_FREQUENCY   1000000
// #define SPI_FREQUENCY   5000000
// #define SPI_FREQUENCY  10000000
// #define SPI_FREQUENCY  20000000
#define SPI_FREQUENCY  27000000 // Actually sets it to 26.67MHz = 80/3
// #define SPI_FREQUENCY  40000000 // Maximum to use SPIFFS
// #define SPI_FREQUENCY  80000000

// Optional reduced SPI frequency for reading TFT
#define SPI_READ_FREQUENCY  20000000

// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:
#define SPI_TOUCH_FREQUENCY  2500000

// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.
// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)
// then uncomment the following line:
//#define USE_HSPI_PORT

// Comment out the following #define if "SPI Transactions" do not need to be
// supported. When commented out the code size will be smaller and sketches will
// run slightly faster, so leave it commented out unless you need it!

// Transaction support is needed to work with SD library but not needed with TFT_SdFat
// Transaction support is required if other SPI devices are connected.

// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)
// so changing it here has no effect

// #define SUPPORT_TRANSACTIONS

つぎに、画面キャプチャーの本体です。サンプルはProcessingを使用してシリアル経由で転送していますが、今回はSDカードに保存します。こちらもlibに配置しました。

現在次のパラメータのみ実装しています。
FILE_TYPE "bmp"
BITS_PER_PIXEL 16
NPIXELS 1

lib/ScreenCapture.h
boolean screenServer(void);
boolean screenServer(String filename);
boolean bmpScreenServer(String filename);
lib/ScreenCapture.cpp
#include <FS.h>
#include <SPIFFS.h>
#include <SD.h>
#include <TFT_eSPI.h>
#include "ScreenCapture.h"
// Reads a screen image off the TFT and send it to a processing client sketch
// over the serial port. Use a high baud rate, e.g. for an ESP8266:
// Serial.begin(921600);

// At 921600 baud a 320 x 240 image with 16 bit colour transfers can be sent to the
// PC client in ~1.67s and 24 bit colour in ~2.5s which is close to the theoretical
// minimum transfer time.

// This sketch has been created to work with the TFT_eSPI library here:
// https://github.com/Bodmer/TFT_eSPI

// Created by: Bodmer 27/1/17
// Updated by: Bodmer 10/3/17
// Updated by: Bodmer 23/11/18 to support SDA reads and the ESP32
// Version: 0.08

// MIT licence applies, all text above must be included in derivative works

//====================================================================================
//                                  Definitions
//====================================================================================
//#define BAUD_RATE 115200      // Maximum Serial Monitor rate for other messages
//#define DUMP_BAUD_RATE 115200 // Rate used for screen dumps
#define BAUD_RATE 921600      // Maximum Serial Monitor rate for other messages
#define DUMP_BAUD_RATE 921600 // Rate used for screen dumps

#define PIXEL_TIMEOUT 100     // 100ms Time-out between pixel requests
#define START_TIMEOUT 10000   // 10s Maximum time to wait at start transfer

#define BITS_PER_PIXEL 16     // 24 for RGB colour format, 16 for 565 colour format
//#define BITS_PER_PIXEL 24     // 24 for RGB colour format, 16 for 565 colour format

// File names must be alpha-numeric characters (0-9, a-z, A-Z) or "/" underscore "_"
// other ascii characters are stripped out by client, including / generates
// sub-directories
//#define DEFAULT_FILENAME "tft_screenshots/screenshot" // In case none is specified
#define DEFAULT_FILENAME "/screenshot" // In case none is specified
#define FILE_TYPE "bmp"       // jpg, bmp, png, tif are valid

// Filename extension
// '#' = add incrementing number, '@' = add timestamp, '%' add millis() timestamp,
// '*' = add nothing
// '@' and '%' will generate new unique filenames, so beware of cluttering up your
// hard drive with lots of images! The PC client sketch is set to limit the number of
// saved images to 1000 and will then prompt for a restart.
#define FILE_EXT  '@'         

// Number of pixels to send in a burst (minimum of 1), no benefit above 8
// NPIXELS values and render times:
// NPIXELS 1 = use readPixel() = >5s and 16 bit pixels only
// NPIXELS >1 using rectRead() 2 = 1.75s, 4 = 1.68s, 8 = 1.67s
#define NPIXELS 1  // Must be integer division of both TFT width and TFT height

TFT_eSPI tft = TFT_eSPI();

//====================================================================================
//                           Screen server call with no filename
//====================================================================================
// Start a screen dump server (serial or network) - no filename specified
boolean screenServer(void)
{
  // With no filename the screenshot will be saved with a default name e.g. tft_screen_#.xxx
  // where # is a number 0-9 and xxx is a file type specified below
  return screenServer(DEFAULT_FILENAME);
}

//====================================================================================
//                           Screen server call with filename
//====================================================================================
// Start a screen dump server (serial or network) - filename specified
boolean screenServer(String filename)
{
  delay(0); // Equivalent to yield() for ESP8266;

  boolean result = bmpScreenServer(filename); // Screenshot serial port server

  delay(0); // Equivalent to yield()

  return result;
}

//====================================================================================
//                BMP file save
//====================================================================================
int sdfwrite( char* data, int len , int size , File file )
{
//  int s = file.print(data);
     for ( int i = 0; i < len; i++ )
     {
          int s = file.write( data[i] );
          if (file.getWriteError() != 0)
          {
            Serial.println("Write Error");
            Serial.println(file.getWriteError());
          }
     }
     return size;
}

boolean bmpScreenServer(String FileName)
{
 using namespace std;

 tft.setRotation(5);

 int BitDepth = 16; 
 int Width = tft.width();
 int Height = tft.height();

 char scfile[40];
 char filename[40];
 struct tm *timenow;

 time_t now = time(NULL);
 timenow = gmtime(&now);

 strftime(filename, sizeof(filename), "%Y%m%d%H%M%S.bmp", timenow);
 sprintf(scfile, "%s_%s", FileName.c_str(), filename);
 Serial.println(scfile);

 File file = SD.open( scfile, FILE_WRITE );

 // some preliminaries

 double dBytesPerPixel = ( (double) BitDepth ) / 8.0;
 double dBytesPerRow = dBytesPerPixel * (Width+0.0);
 dBytesPerRow = ceil(dBytesPerRow);

 int BytePaddingPerRow = 4 - ( (int) (dBytesPerRow) )% 4;
 if( BytePaddingPerRow == 4 )
 { BytePaddingPerRow = 0; } 

 double dActualBytesPerRow = dBytesPerRow + BytePaddingPerRow;

 double dTotalPixelBytes = Height * dActualBytesPerRow;

 double dPaletteSize = 0;
// if( BitDepth == 1 || BitDepth == 4 || BitDepth == 8 )
// { dPaletteSize = IntPow(2,BitDepth)*4.0; }

 // leave some room for 16-bit masks 
 if( BitDepth == 16 )
 { dPaletteSize = 3*4; }

 double dTotalFileSize = 14 + 40 + dPaletteSize + dTotalPixelBytes;

 // write the file header 

// typedef unsigned char  ebmpBYTE;
 typedef unsigned short ebmpWORD;
 typedef unsigned int  ebmpDWORD;

 ebmpWORD bfType = 19778; // BM
 ebmpDWORD bfSize = (ebmpDWORD) dTotalFileSize; 
 ebmpWORD bfReserved1 = 0; 
 ebmpWORD bfReserved2 = 0; 
 ebmpDWORD bfOffBits = (ebmpDWORD) (14+40+dPaletteSize);  

 sdfwrite( (char*) &(bfType) , sizeof(ebmpWORD) , 1 , file );
 sdfwrite( (char*) &(bfSize) , sizeof(ebmpDWORD) , 1 , file );
 sdfwrite( (char*) &(bfReserved1) , sizeof(ebmpWORD) , 1 , file );
 sdfwrite( (char*) &(bfReserved2) , sizeof(ebmpWORD) , 1 , file );
 sdfwrite( (char*) &(bfOffBits) , sizeof(ebmpDWORD) , 1, file );

 // write the info header 

 ebmpDWORD biSize = 40;
 ebmpDWORD biWidth = Width;
 ebmpDWORD biHeight = Height;
 ebmpWORD biPlanes = 1;
 ebmpWORD biBitCount = BitDepth;
 ebmpDWORD biCompression = 0;
 ebmpDWORD biSizeImage = (ebmpDWORD) dTotalPixelBytes;
 ebmpDWORD biXPelsPerMeter = 0;
 ebmpDWORD biYPelsPerMeter = 0;
 ebmpDWORD biClrUsed = 0;
 ebmpDWORD biClrImportant = 0;

 // indicates that we'll be using bit fields for 16-bit files
 if( BitDepth == 16 )
 { biCompression = 3; }

 sdfwrite( (char*) &(biSize) , sizeof(ebmpDWORD) , 1 , file );
 sdfwrite( (char*) &(biWidth) , sizeof(ebmpDWORD) , 1 , file );
 sdfwrite( (char*) &(biHeight) , sizeof(ebmpDWORD) , 1 , file );
 sdfwrite( (char*) &(biPlanes) , sizeof(ebmpWORD) , 1 , file );
 sdfwrite( (char*) &(biBitCount) , sizeof(ebmpWORD) , 1 , file );
 sdfwrite( (char*) &(biCompression) , sizeof(ebmpDWORD) , 1 , file );
 sdfwrite( (char*) &(biSizeImage) , sizeof(ebmpDWORD) , 1 , file );
 sdfwrite( (char*) &(biXPelsPerMeter) , sizeof(ebmpDWORD) , 1 , file );
 sdfwrite( (char*) &(biYPelsPerMeter) , sizeof(ebmpDWORD) , 1 , file ); 
 sdfwrite( (char*) &(biClrUsed) , sizeof(ebmpDWORD) , 1 , file);
 sdfwrite( (char*) &(biClrImportant) , sizeof(ebmpDWORD) , 1 , file);

 // write the palette 
// if( BitDepth == 1 || BitDepth == 4 || BitDepth == 8 )
// {
//  int NumberOfColors = IntPow(2,BitDepth);

  // if there is no palette, create one 
//  if( !Colors )
//  {
//   if( !Colors )
//   { Colors = new RGBApixel [NumberOfColors]; }
//   CreateStandardColorTable(); 
//  }

//  int n;
//  for( n=0 ; n < NumberOfColors ; n++ )
//  { sdfwrite( (char*) &(Colors[n]) , 4 , 1 , fp ); }
// }

 // write the pixels 
 if( BitDepth == 16 )
 {
  // write the bit masks

  ebmpWORD BlueMask = 31;    // bits 12-16
  ebmpWORD GreenMask = 2016; // bits 6-11
  ebmpWORD RedMask = 63488;  // bits 1-5
  ebmpWORD ZeroWORD;

  sdfwrite( (char*) &RedMask , sizeof(ebmpWORD) , 1 , file );
  sdfwrite( (char*) &ZeroWORD , sizeof(ebmpWORD) , 1 , file );

  sdfwrite( (char*) &GreenMask , sizeof(ebmpWORD) , 1 , file );
  sdfwrite( (char*) &ZeroWORD , sizeof(ebmpWORD) , 1 , file );

  sdfwrite( (char*) &BlueMask , sizeof(ebmpWORD) , 1 , file );
  sdfwrite( (char*) &ZeroWORD , sizeof(ebmpWORD) , 1 , file );

  int DataBytes = Width*2;
  int PaddingBytes = ( 4 - DataBytes % 4 ) % 4;

  // write the actual pixels

  uint8_t color[3 * NPIXELS]; // RGB and 565 format color buffer for N pixels

  // Send all the pixels on the whole screen
  for ( uint32_t y = 0; y < tft.height(); y++)
  {
    // Increment x by NPIXELS as we send NPIXELS for every byte received
    for ( uint32_t x = 0; x < tft.width(); x += NPIXELS)
    {
      delay(0); // Equivalent to yield() for ESP8266;

      // Fetch N 565 format pixels from x,y and put in buffer
      uint16_t c = tft.readPixel(x, y);
      color[1] = c>>8;
      color[0] = c & 0xFF;  // Swap bytes
      // Send buffer to client
      sdfwrite( (char*) color , sizeof(ebmpWORD), 1, file);
    }

  }

 }

 file.close();

 Serial.print("written ");
 Serial.print(dTotalPixelBytes);
 Serial.println(" bytes");
 return true;
}

最後に、アプリに次のようなコードを埋め込みます。
M5Stackの横にあるAポートに、こちらのM5Stack用デュアルボタンを差して、赤のボタンを押すと画面キャプチャーをSDカードに取得するようにします。また、画面キャプチャーの取得に数秒かかるので、その間画面を暗くします。

M5Stack_button.png

main.c
void setup()
{
...


  pinMode(21, INPUT_PULLUP); // red button
  pinMode(22, INPUT_PULLUP); // blue button

}

void loop()
{
...

  M5.update();
  int cur_value_red = digitalRead(21);
  int cur_value_blue = digitalRead(22);

  if (cur_value_red == 0)
  {
    Serial.println("RED button pushed");
    M5.Lcd.setBrightness(20);
    screenServer();
    M5.Lcd.setBrightness(200);
  }

}

サンプル

こちらにArduinoIDE用のサンプルを格納しました。TFT_Screen_Captureのようにカラーバーがランダムに表示されます。Bボタンを長押しすると、SDカードに画面キャプチャーを保存します。

ただし、下記にあるように、現時点ではM5Stackライブラリーが最新ではないため、手動でGitHubから最新のM5StackライブラリーをダウンロードしてWindowsであれば、ドキュメント\Arduino\libraries に配置する必要があります。

最後に

TFTの情報を読み取り、画面キャプチャーを取得するには、Add capability to read TFT SDA bi-directional pin対応されたTFT_eSPIと、こちらのサンプルを使用する必要がありました。Add capability to read TFT SDA bi-directional pinの更新は10日ほど前に本家のM5Stackのソースに取り込まれたようですが、まだ現時点の最新M5Stack 0.2.9ライブラリーには反映されていません。

メリークリスマス!
良いお年をお迎えください。

Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした