0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Kaggle Real or Not?

Posted at

次の課題に submit するまでの流れです。
Real or Not? NLP with Disaster Tweets

次のページを参考にしました。
NLP Getting Started Tutorial

realornot01.py
#! /usr/bin/python
#
#	realornot01.py
#
#					Feb/24/2020
# --------------------------------------------------------------------------
import sys
import numpy as np
import pandas as pd
from sklearn import feature_extraction, linear_model, model_selection, preprocessing
# --------------------------------------------------------------------------
def dump_frame_proc(df):
    try:
        print(len(df.index),len(df.columns))
    except Exception as ee:
        sys.stderr.write("*** error *** dump_frame_proc ***\n")
        sys.stderr.write(str(ee) + "\n")
# --------------------------------------------------------------------------
sys.stderr.write("*** 開始 ***\n")

train_df = pd.read_csv("train.csv")
test_df = pd.read_csv("test.csv")

dump_frame_proc(train_df)
dump_frame_proc(test_df)
#
count_vectorizer = feature_extraction.text.CountVectorizer()
example_train_vectors = count_vectorizer.fit_transform(train_df["text"][0:5])
print(example_train_vectors[0].todense().shape)
print(example_train_vectors[0].todense())
#
train_vectors = count_vectorizer.fit_transform(train_df["text"])
test_vectors = count_vectorizer.transform(test_df["text"])
#
clf = linear_model.RidgeClassifier()
#
scores = model_selection.cross_val_score(clf, train_vectors, train_df["target"], cv=3, scoring="f1")
print(scores)
#
clf.fit(train_vectors, train_df["target"])
#
sample_submission = pd.read_csv("sample_submission.csv")
sample_submission["target"] = clf.predict(test_vectors)
sample_submission.to_csv("submission.csv", index=False)
#
sys.stderr.write("*** 終了 ***\n")
# --------------------------------------------------------------------------

スコアは、 0.77096 でした。

realornot_mar24.png

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?