0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Python3: SEIR モデルを表示する

Last updated at Posted at 2020-08-25

こちらにあるプログラムを改造して見通しをよくしました。
csdegraaf/CoronaVirusModel
改造したのは、corona_spread.py だけです。

corona_spread.py
#! /usr/bin/python
#
#	corona_spread.py
#
#						Aug/25/2020
# ------------------------------------------------------------------
import	sys

import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
#
import parameters as parameters
from calculations_module import seir_function

# ------------------------------------------------------------------
def plot_proc(tspan,y):
	total_cases = y[:, 1] + y[:, 2] + y[:, 3]
	total_cases_active = y[:, 1] + y[:, 2]

	fig, ax = plt.subplots()
	ax.plot(tspan, total_cases, color="b", label="E+I+R: Total cases")
	ax.plot(tspan, total_cases_active, color="r", label="E+I: Active cases")
	ax.set(xlabel="time (days)", ylabel="Patients", title='Cumulative and active cases')
	plt.legend()
#
	plt.show()
#
# ------------------------------------------------------------------
def out_proc(tspan,y):
	nsteps = np.size(tspan)
	S_end = y[nsteps - 1, 0]
	E_end = y[nsteps - 1, 1]
	I_end = y[nsteps - 1, 2]
	R_end = y[nsteps - 1, 3]

	total = S_end + E_end + I_end + R_end

	print('time (days): % 2d' %tspan[nsteps-1])

	print('total population: % 2d' %total)

	print('initial infected: % 2d' %I_0)

	print('total cases (E+I+R) at t= % 2d : % 2d' %(tspan[nsteps-1], E_end + I_end + R_end))

	print('Recovered at t=  % 2d : % 2d \n' %(tspan[nsteps-1], R_end))
	print('Infected (infectious) at t= % 2d : % 2d \n' %(tspan[nsteps-1],I_end))
	print('Exposed (non-infectious) at t= % 2d : % 2d \n ' %(tspan[nsteps-1], E_end))
	print('Susceptable at t= % 2d : % 2d \n ' %(tspan[nsteps-1], S_end))
#
# ------------------------------------------------------------------
def seir_with_params(t, y):
	return seir_function(t, y, params)
#
# ------------------------------------------------------------------
def calculation_proc(S_0,E_0,I_0,R_0):
	t_0 = 0
	tspan = np.linspace(t_0, 181, 180)

	y_init = np.zeros(4)
	y_init[0] = S_0
	y_init[1] = E_0
	y_init[2] = I_0
	y_init[3] = R_0


	r = integrate.ode(seir_with_params).set_integrator("dopri5")
	r.set_initial_value(y_init, t_0)
	y = np.zeros((len(tspan), len(y_init)))
	y[0, :] = y_init
	for i in range(1, 180):
		y[i, :] = r.integrate(tspan[i])
		if not r.successful():
			raise RuntimeError("Could not integrate")
#
	return tspan,y

# ------------------------------------------------------------------
sys.stderr.write("*** start ***\n")

S_0 = 11.0e+6
I_0 = 40.0
E_0 = 20. * I_0
R_0 = 0

c = 0.0
N = S_0 + I_0 + E_0 + R_0

sigma = 1. / 5.2
gamma = 1. / 18.


r_zero_array = np.zeros([6, 2])
r_zero_array[0, :] = [0.0,  3.0]
r_zero_array[1, :] = [20.0,  2.6]
r_zero_array[2, :] = [70.0,  1.9]
r_zero_array[3, :] = [84.0,  1.0]
r_zero_array[4, :] = [90.0,  .50]
r_zero_array[5, :] = [1000, .50]

params = parameters.Params(c, N, sigma, gamma, r_zero_array)

tspan,yy = calculation_proc(S_0,E_0,I_0,R_0)

plot_proc(tspan,yy)

out_proc(tspan,yy)

sys.stderr.write("*** end ***\n")
# ------------------------------------------------------------------
calculations_module.py
import numpy as np


def seir_function(t, y, params):
    """
    dS / dt = -beta * S * I / N
    dE / dt = +beta * S * I / N - sigma * E
    dI / dt = +sigma * E - gamma * I + c * R * I / N
    dR / dt = gamma * I - c * R * I / N

    yprime = [dS / dt  dE / dt dI / dt   dRdt]

    input:
      t current time
      y vector of current soln values
      y(1) = S, y(2) = E, y(3) = I, y(4) = R

    parameters in "params"
      beta, N, sigma, gamma, c, R_zero_array(table of values)

    output: (col vector)
      yprime(1) = dS / dt
      yprime(2) = dE / dt
      yprime(3) = dI / dt
      yprime(4) = dR / dt

    """
    R_zero_array = params.r_zero
    
    min_t = np.min(R_zero_array[:, 0])
    max_t = np.max(R_zero_array[:, 0])
    t_val = max(min_t, min(t, max_t))
    
    R_zero = np.interp(t_val, R_zero_array[:, 0], R_zero_array[:, 1])
    
    gamma = params.gamma
    
    beta = R_zero * gamma
    
    N = params.N
    sigma = params.sigma
    c = params.c
    
    S = y[0]
    E = y[1]
    I = y[2]
    R = y[3]
    
    yprime = np.zeros(4)
    
    yprime[0] = -beta * S * I / N
    yprime[1] = +beta * S * I / N - sigma * E
    yprime[2] = +sigma * E - gamma * I + c * R * I / N
    yprime[3] = gamma * I - c * R * I / N
    return yprime
parameters.py


class Params:
    def __init__(self, c, n, sigma, gamma, r_zero):
        self.c = c
        self.N = n
        self.sigma = sigma
        self.gamma = gamma
        self.r_zero = r_zero

実行方法

./corona_spread.py

実行結果
seir_python_aug25.png

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?