0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

DCTを解析してIDCTをつくる

Last updated at Posted at 2020-06-01

DCTのソースコードが存在するがIDCTのソースコードが存在しないのでDCTを解析してIDCTを実装してみた。

DCTからIDCTの導出は、数学の問題のように式変形をする感じでプログラムをしていくとできました。三角関数のテーブルの中身とかは関係なく単純な式の変換だけでした。

すぐ忘れそうな内容なので過程をメモしときます。

    coef = 0;
    for (i = 0; i < nlnn - 1; ++i) {
        loop1 = 1 << (nlnn - 2 - i);
        loop2 = 1 << i;
        index0 = 0;
        index1 = 1 << (i + 1);
        offset = 1 << (i + 2);

    for (k = 0; k < loop2; ++k) {
            cc = p_c[coef];
            cs = p_s[coef++];
            for (j = 0; j < loop1; ++j) {
                a = p_work[index0 + 0];
                b = p_work[index0 + 1];
                c = p_work[index1 + 0] * cc + p_work[index1 + 1] * cs;      
                d = p_work[index1 + 0] * cs - p_work[index1 + 1] * cc;      

                p_work[index0 + 0] = a + c;
                p_work[index0 + 1] = b + d;
                p_work[index1 + 0] = a - c;
                p_work[index1 + 1] = b - d;
                index0 += offset;
                index1 += offset;
            }
            index0 += 2 - nsmpl;
            index1 += 2 - nsmpl;
        }
    }

というDCT処理があるのですが、逆変換のコードが無いので自力で解析して実装したかった。

nlnn : (1 << nlnn) が nsmpl
nsmpl : サンプル数
p_work : データ 入力と出力を兼用
p_c : cosテーブル
p_s : sinテーブル

サンプル数が4の場合を解析

サンプル数を小さくしDCT処理の動作を解析してみます。サンプル数 nsmpl=4にしてループを展開してみます。

    {
        cc = p_c[0];
        cs = p_s[0];

        a = p_work[0];
        b = p_work[1];
        c = p_work[2] * cc + p_work[3] * cs;
        d = p_work[2] * cs - p_work[3] * cc;

        p_work[0] = a + c;
        p_work[1] = b + d;
        p_work[2] = a - c;
        p_work[3] = b - d;
    }

となります。これなら逆変換を導出できそうです。

        cc = p_c[0];
        cs = p_s[0];

        a = (p_work[0] + p_work[2]) / 2;
        b = (p_work[1] + p_work[3]) / 2;
        c = (p_work[0] - p_work[2]) / 2;
        d = (p_work[1] - p_work[3]) / 2;

        p_work[0] = a;
        p_work[1] = b;
        p_work[2] = (c * cc + d * cs) / (cc * cc + cs * cs);
        p_work[3] = (c * cs - d * cc) / (cc * cc + cs * cs);

とすると元の値を取り出せました。

サンプル数が8の場合を解析

サンプル数を8にして再度ループを展開してみます。

        cc = p_c[0];
        cs = p_s[0];
        a = p_work[0];
        b = p_work[1];
        c = p_work[2] * cc + p_work[3] * cs;
        d = p_work[2] * cs - p_work[3] * cc;
        p_work[0] = a + c;
        p_work[1] = b + d;
        p_work[2] = a - c;
        p_work[3] = b - d;

        a = p_work[4];
        b = p_work[5];
        c = p_work[6] * cc + p_work[7] * cs;
        d = p_work[6] * cs - p_work[7] * cc;
        p_work[4] = a + c;
        p_work[5] = b + d;
        p_work[6] = a - c;
        p_work[7] = b - d;

        cc = p_c[1];
        cs = p_s[1];
        a = p_work[0];
        b = p_work[1];
        c = p_work[4] * cc + p_work[5] * cs;
        d = p_work[4] * cs - p_work[5] * cc;
        p_work[0] = a + c;
        p_work[1] = b + d;
        p_work[4] = a - c;
        p_work[5] = b - d;

        cc = p_c[2];
        cs = p_s[2];
        a = p_work[2];
        b = p_work[3];
        c = p_work[6] * cc + p_work[7] * cs;
        d = p_work[6] * cs - p_work[7] * cc;
        p_work[2] = a + c;
        p_work[3] = b + d;
        p_work[6] = a - c;
        p_work[7] = b - d;


となりました。変換が4回行われています。1回の変換はサンプル数が4の時の変換と同じなので、同様に逆変換を導出できます。

        cc = p_c[2];
        cs = p_s[2];
        a = (p_work[2] + p_work[6]) / 2;
        b = (p_work[3] + p_work[7]) / 2;
        c = (p_work[2] - p_work[6]) / 2;
        d = (p_work[3] - p_work[7]) / 2;
        p_work[2] = a;
        p_work[3] = b;
        p_work[6] = (c * cc + d * cs) / (cc * cc + cs * cs);
        p_work[7] = (c * cs - d * cc) / (cc * cc + cs * cs);

        cc = p_c[1];
        cs = p_s[1];
        a = (p_work[0] + p_work[4]) / 2;
        b = (p_work[1] + p_work[5]) / 2;
        c = (p_work[0] - p_work[4]) / 2;
        d = (p_work[1] - p_work[5]) / 2;
        p_work[0] = a;
        p_work[1] = b;
        p_work[4] = (c * cc + d * cs) / (cc * cc + cs * cs);
        p_work[5] = (c * cs - d * cc) / (cc * cc + cs * cs);

        cc = p_c[0];
        cs = p_s[0];
        a = (p_work[4] + p_work[6]) / 2;
        b = (p_work[5] + p_work[7]) / 2;
        c = (p_work[4] - p_work[6]) / 2;
        d = (p_work[5] - p_work[7]) / 2;
        p_work[4] = a;
        p_work[5] = b;
        p_work[6] = (c * cc + d * cs) / (cc * cc + cs * cs);
        p_work[7] = (c * cs - d * cc) / (cc * cc + cs * cs);

        cc = p_c[0];
        cs = p_s[0];
        a = (p_work[0] + p_work[2]) / 2;
        b = (p_work[1] + p_work[3]) / 2;
        c = (p_work[0] - p_work[2]) / 2;
        d = (p_work[1] - p_work[3]) / 2;
        p_work[0] = a;
        p_work[1] = b;
        p_work[2] = (c * cc + d * cs) / (cc * cc + cs * cs);
        p_work[3] = (c * cs - d * cc) / (cc * cc + cs * cs);

という式で元の値が得られました。

IDCTをループ化

DCTと同じくIDCTも三重ループになるので、展開されている逆変換の式をちょっとずつループにしていきます。

サンプル数4の場合の逆変換を配列のインデックスを変数を使うようにします。

        coef = 0;
        i = 0;

        index0 = 0;
        index1 = 1 << (i + 1);
        {
            cc = p_c[coef];
            cs = p_s[coef];
            a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
            b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
            c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
            d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
            p_work[index0 + 0] = a;
            p_work[index0 + 1] = b;
            p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
            p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
        }

サンプル数8の場合の逆変換もインデックスを変数にする。

        coef = 2;
        index0 = 2;
        index1 = 6;
        {
            cc = p_c[coef];
            cs = p_s[coef--];
            a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
            b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
            c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
            d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
            p_work[index0 + 0] = a;
            p_work[index0 + 1] = b;
            p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
            p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
        }
        index0 = 0;
        index1 = 4;
        {
            cc = p_c[coef];
            cs = p_s[coef--];
            a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
            b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
            c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
            d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
            p_work[index0 + 0] = a;
            p_work[index0 + 1] = b;
            p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
            p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
        }
        cc = p_c[coef];
        cs = p_s[coef--];
        index0 = 4;
        index1 = 6;
        {
            a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
            b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
            c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
            d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
            p_work[index0 + 0] = a;
            p_work[index0 + 1] = b;
            p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
            p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
        }
        index0 = 0;
        index1 = 2;
        {
            a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
            b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
            c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
            d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
            p_work[index0 + 0] = a;
            p_work[index0 + 1] = b;
            p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
            p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
        }

3番目と4番目の逆変換をループに置き換える。

        coef = 2;
        index0 = 2;
        index1 = 6;
        {
            cc = p_c[coef];
            cs = p_s[coef--];
            a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
            b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
            c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
            d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
            p_work[index0 + 0] = a;
            p_work[index0 + 1] = b;
            p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
            p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
        }
        index0 = 0;
        index1 = 4;
        {
            cc = p_c[coef];
            cs = p_s[coef--];
            a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
            b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
            c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
            d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
            p_work[index0 + 0] = a;
            p_work[index0 + 1] = b;
            p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
            p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
        }

        loop1 = 2;
        cc = p_c[coef];
        cs = p_s[coef--];
        offset = 4
        index0 = 4;
        index1 = 6;
        for (j = 0; j < loop1; ++j) {
            a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
            b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
            c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
            d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
            p_work[index0 + 0] = a;
            p_work[index0 + 1] = b;
            p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
            p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
            index0 -= offset;
            index1 -= offset;
        }

次に1番目と2番目の逆変換をループに置き換える。そのループを3、4番目の逆変換にも適用。

        coef = 2;
        loop1 = 1;
        loop2 = 2; 
        offset = 8;                                                   
        index0 = 2;
        index1 = 6;
        for (k = 0; k < loop2; ++k) {
            cc = p_c[coef];
            cs = p_s[coef--];
            for (j = 0; j < loop1; ++j) {
                a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
                b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
                c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
                d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
                p_work[index0 + 0] = a;
                p_work[index0 + 1] = b;
                p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
                p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);

                index0 -= offset;
                index1 -= offset;
            }
            index0 -= 2 + nsmpl;
            index1 -= 2 + nsmpl;
        }

        loop1 = 2;
        loop2 = 1;
        offset = 4
        index0 = 4
        index1 = 6

        for (k = 0; k < loop2; ++k) {
            cc = p_c[coef];
            cs = p_s[coef--];
            for (j = 0; j < loop1; ++j) {
                a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
                b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
                c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
                d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
                p_work[index0 + 0] = a;
                p_work[index0 + 1] = b;
                p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
                p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
                index0 -= offset;
                index1 -= offset;
            }
            index0 -= 2 + nsmpl;
            index1 -= 2 + nsmpl;
        }

外側のループにまとめる。

外側ループの初期値はDCTの4番目の変換を実行する直前の値になるように頑張って調整する。

   coef = 2;
  for (i = nlnn - 2; i >= 0; i--) {
        loop1 = 1 << (nlnn - 2 - i);
        loop2 = 1 << i;
        offset = 1 << (i + 2);
        index0 = offset * (loop1 * loop2 - 1) + (2 - nsmpl) * (loop2 - 1);
        index1 = nsmpl - 2;
        for (k = 0; k < loop2; ++k) {
            cc = p_c[coef];
            cs = p_s[coef--];
            for (j = 0; j < loop1; ++j) {
                a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
                b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
                c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
                d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
                p_work[index0 + 0] = a;
                p_work[index0 + 1] = b;
                p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
                p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
                index0 -= offset;
                index1 -= offset;
            }
            index0 -= 2 + nsmpl;
            index1 -= 2 + nsmpl;
        }
    }

ループ外のcoefの初期値はサンプル数を変えて値の変化を観察する。

4  -> 0
8  -> 2
16 -> 6
32 -> 14
...
128 -> 62

となるので、(サンプル数/2) -2みたいでした。

   coef = (nsmpl >> 1) - 2;
  for (i = nlnn - 2; i >= 0; --i) {
        loop1 = 1 << (nlnn - 2 - i);
        loop2 = 1 << i;
        offset = 1 << (i + 2);
        index0 = offset * (loop1 * loop2 - 1) + (2 - nsmpl) * (loop2 - 1);
        index1 = nsmpl - 2;
        for (k = 0; k < loop2; ++k) {
            cc = p_c[coef];
            cs = p_s[coef--];
            for (j = 0; j < loop1; ++j) {
                a = (p_work[index0 + 0] + p_work[index1 + 0]) / 2;
                b = (p_work[index0 + 1] + p_work[index1 + 1]) / 2;
                c = (p_work[index0 + 0] - p_work[index1 + 0]) / 2;
                d = (p_work[index0 + 1] - p_work[index1 + 1]) / 2;
                p_work[index0 + 0] = a;
                p_work[index0 + 1] = b;
                p_work[index1 + 0] = (c * cc + d * cs) / (cc * cc + cs * cs);
                p_work[index1 + 1] = (c * cs - d * cc) / (cc * cc + cs * cs);
                index0 -= offset;
                index1 -= offset;
            }
            index0 -= 2 + nsmpl;
            index1 -= 2 + nsmpl;
        }
    }

ということでDCTからIDCTができました。パチパチ。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?