7
12

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

PyTorchをいちから使い始めてみる (torch 1.5.0 CPUのみ)

Last updated at Posted at 2020-05-03

ChainerからPyTorchへ乗り換えるため、PyTorchを完全にいちから使い始めてみた結果。MNISTの手書き数字の識別を行う学習器をとりあえず作成(NNモデルはConv4層→FC2層)、動作を確認、98%前後の精度(Accuracy)となり、良好。

PyTorchのインストール試行

成功の模様。

https://pytorch.org/get-started/locally/
1.5 Stable、Windows、Python3.7、CUDAなし(CPU)の設定のコマンドを実行。

!pip install torch==1.5.0+cpu torchvision==0.6.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
Looking in links: https://download.pytorch.org/whl/torch_stable.html
Collecting torch==1.5.0+cpu
  Downloading https://download.pytorch.org/whl/cpu/torch-1.5.0%2Bcpu-cp37-cp37m-win_amd64.whl (109.2MB)
Collecting torchvision==0.6.0+cpu
  Downloading https://download.pytorch.org/whl/cpu/torchvision-0.6.0%2Bcpu-cp37-cp37m-win_amd64.whl (456kB)
Requirement already satisfied: numpy in ...\wpy64-3741\python-3.7.4.amd64\lib\site-packages (from torch==1.5.0+cpu) (1.16.5+mkl)
Requirement already satisfied: future in ...\wpy64-3741\python-3.7.4.amd64\lib\site-packages (from torch==1.5.0+cpu) (0.17.0)
Requirement already satisfied: pillow>=4.1.1 in ...\wpy64-3741\python-3.7.4.amd64\lib\site-packages (from torchvision==0.6.0+cpu) (6.1.0)
Installing collected packages: torch, torchvision
  Found existing installation: torch 1.3.1+cpu
    Uninstalling torch-1.3.1+cpu:
      Successfully uninstalled torch-1.3.1+cpu
  Found existing installation: torchvision 0.4.2+cpu
    Uninstalling torchvision-0.4.2+cpu:
      Successfully uninstalled torchvision-0.4.2+cpu
Successfully installed torch-1.5.0+cpu torchvision-0.6.0+cpu
Note: you may need to restart the kernel to use updated packages.


WARNING: You are using pip version 19.2.3, however version 20.1 is available.
You should consider upgrading via the 'python -m pip install --upgrade pip' command.
!pip show torch
Name: torch
Version: 1.5.0+cpu
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
Home-page: https://pytorch.org/
Author: PyTorch Team
Author-email: packages@pytorch.org
License: BSD-3
Location: ...\wpy64-3741\python-3.7.4.amd64\lib\site-packages
Requires: future, numpy
Required-by: torchvision

Libs

import numpy as np
import matplotlib.pyplot as plt

import torch
import torchvision

PyTorch初歩試用

参考:

# sec: 行列生成のテスト

torch.rand(5, 3)
tensor([[0.7130, 0.1860, 0.6266],
        [0.9275, 0.5629, 0.7507],
        [0.7500, 0.7341, 0.9597],
        [0.5301, 0.7026, 0.3152],
        [0.2197, 0.3942, 0.8452]])
# sec: 勾配計算のテスト

x = torch.arange(4, dtype=torch.float32).view(2, 2)
print(x)

x.requires_grad_(True)
print(x)

y = x**2 - 2*x + 1
print(y)

y_ave = y.mean()
print(y_ave)

y_ave.backward()
print(x.grad)
print(y.grad)
tensor([[0., 1.],
        [2., 3.]])
tensor([[0., 1.],
        [2., 3.]], requires_grad=True)
tensor([[1., 0.],
        [1., 4.]], grad_fn=<AddBackward0>)
tensor(1.5000, grad_fn=<MeanBackward0>)
tensor([[-0.5000,  0.0000],
        [ 0.5000,  1.0000]])
None

torchvision初歩試用

# sec: MNISTデータの初回呼び出し ダウンロードのテスト

ds = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=True, download=True)
ds
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to trains/pytorch-mnist\MNIST\raw\train-images-idx3-ubyte.gz

HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))

Extracting trains/pytorch-mnist\MNIST\raw\train-images-idx3-ubyte.gz to trains/pytorch-mnist\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to trains/pytorch-mnist\MNIST\raw\train-labels-idx1-ubyte.gz

HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))

Extracting trains/pytorch-mnist\MNIST\raw\train-labels-idx1-ubyte.gz to trains/pytorch-mnist\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to trains/pytorch-mnist\MNIST\raw\t10k-images-idx3-ubyte.gz

HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))

Extracting trains/pytorch-mnist\MNIST\raw\t10k-images-idx3-ubyte.gz to trains/pytorch-mnist\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to trains/pytorch-mnist\MNIST\raw\t10k-labels-idx1-ubyte.gz

HBox(children=(IntProgress(value=1, bar_style='info', max=1), HTML(value='')))

Extracting trains/pytorch-mnist\MNIST\raw\t10k-labels-idx1-ubyte.gz to trains/pytorch-mnist\MNIST\raw
Processing...

..\torch\csrc\utils\tensor_numpy.cpp:141: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program.

Done!

Dataset MNIST
    Number of datapoints: 60000
    Root location: trains/pytorch-mnist
    Split: Train
# sec: MNISTデータの2回目呼び出し

ds = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=True, download=True)
ds
Dataset MNIST
    Number of datapoints: 60000
    Root location: trains/pytorch-mnist
    Split: Train
# sec: MNISTデータのデータ取り出し・表示

img = np.asarray(ds[0][0])
print(img[20:25, 10:15], img.shape)

img = np.asarray(ds[0][0].convert('F'))
print(img[20:25, 10:15], img.shape)

plt.imshow(img, cmap='gray', interpolation='None')
plt.show()
[[ 24 114 221 253 253]
 [213 253 253 253 253]
 [253 253 253 195  80]
 [253 244 133  11   0]
 [132  16   0   0   0]] (28, 28)
[[ 24. 114. 221. 253. 253.]
 [213. 253. 253. 253. 253.]
 [253. 253. 253. 195.  80.]
 [253. 244. 133.  11.   0.]
 [132.  16.   0.   0.   0.]] (28, 28)

output_11_1.png

# sec: TorchのTensorを出力する

ds = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=True, download=True, 
    transform=torchvision.transforms.ToTensor())

# sec: MNISTデータのデータ取り出し・表示

img = ds[0][0]
print(img[0, 20:25, 10:15], ds[0][0].shape)

plt.imshow(img[0, :, :], cmap='gray', interpolation='None')
plt.show()
tensor([[0.0941, 0.4471, 0.8667, 0.9922, 0.9922],
        [0.8353, 0.9922, 0.9922, 0.9922, 0.9922],
        [0.9922, 0.9922, 0.9922, 0.7647, 0.3137],
        [0.9922, 0.9569, 0.5216, 0.0431, 0.0000],
        [0.5176, 0.0627, 0.0000, 0.0000, 0.0000]]) torch.Size([1, 28, 28])

output_12_1.png

NNモデル

import torch.nn as nn
import torch.nn.functional as F

class MyConvNet1(nn.Module):
    
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 5, 3, stride=1, padding=0)
        self.conv2 = nn.Conv2d(5, 10, 3, stride=1, padding=0)
        self.conv3 = nn.Conv2d(10, 15, 3, stride=1, padding=0)
        self.conv4 = nn.Conv2d(15, 20, 3, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(5)
        self.bn2 = nn.BatchNorm2d(10)
        self.bn3 = nn.BatchNorm2d(15)
        self.bn4 = nn.BatchNorm2d(20)
        self.pool1 = nn.MaxPool2d(2)
        self.pool2 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(20*4*4, 20)
        self.fc2 = nn.Linear(20, 10)
        self.drop1 = nn.Dropout(0.5)
        self.drop2 = nn.Dropout(0.5)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool1(x)
        x = F.relu(self.bn3(self.conv3(x)))
        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool2(x)
        x = x.view(-1, 20*4*4)
        x = F.relu(self.fc1(self.drop1(x)))
        x = self.fc2(self.drop2(x))
        return x

TargetNet = MyConvNet1
# sec: test (順伝播計算 ゼロ値を入力)

model = TargetNet()
y = model(torch.zeros(1, 1, 28, 28))
print(y)

# sec: test (順伝播計算 MNISTデータを入力)

ds = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=True, download=True, 
    transform=torchvision.transforms.ToTensor())
y = model(ds[0][0].view(1, 1, 28, 28))
print(y)
tensor([[ 0.2101,  0.0317, -0.0457, -0.0219,  0.1032,  0.0080, -0.2413, -0.2003,
          0.0222, -0.0821]], grad_fn=<AddmmBackward>)
tensor([[-0.1699,  0.5580, -0.1396, -0.6204,  0.3966, -0.0115, -0.0553, -0.0156,
         -0.3096, -0.1288]], grad_fn=<AddmmBackward>)

学習

参考:

# sec: データセット

ds_train = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=True, download=True, 
    transform=torchvision.transforms.ToTensor())
dl_train = torch.utils.data.DataLoader(ds_train, batch_size=128, shuffle=True, num_workers=2)
print(len(ds_train))

# sec: 設定

model = TargetNet()
criterion = nn.CrossEntropyLoss()
# case: SGD
# optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# case: Adam
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# case: end
print(model)
60000
MyConvNet1(
  (conv1): Conv2d(1, 5, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(5, 10, kernel_size=(3, 3), stride=(1, 1))
  (conv3): Conv2d(10, 15, kernel_size=(3, 3), stride=(1, 1))
  (conv4): Conv2d(15, 20, kernel_size=(3, 3), stride=(1, 1))
  (bn1): BatchNorm2d(5, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (bn2): BatchNorm2d(10, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (bn3): BatchNorm2d(15, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (bn4): BatchNorm2d(20, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (fc1): Linear(in_features=320, out_features=20, bias=True)
  (fc2): Linear(in_features=20, out_features=10, bias=True)
  (drop1): Dropout(p=0.5, inplace=False)
  (drop2): Dropout(p=0.5, inplace=False)
)
# sec: 学習ループ

model.train()
for i_ep in range(10): # loop over the dataset multiple times

    loss_sum = 0.0
    for ds_i in dl_train:
        
        inputs, labels = ds_i

        optimizer.zero_grad()
        outputs = model(inputs) # 順伝播
        loss = criterion(outputs, labels)
        loss.backward() # 逆伝播
        optimizer.step()

        loss_sum += loss.item()
    
    # sec: print
    
    print('%dep loss: %.5f' % (i_ep + 1, loss_sum / len(ds_train)))

n_ep = i_ep + 1
print('Finished Training')
1ep loss: 0.00700
2ep loss: 0.00359
3ep loss: 0.00310
4ep loss: 0.00290
5ep loss: 0.00272
6ep loss: 0.00258
7ep loss: 0.00247
8ep loss: 0.00243
9ep loss: 0.00237
10ep loss: 0.00232
Finished Training

バリデーション

# sec: データセット

ds_vali = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=True, download=True, 
    transform=torchvision.transforms.ToTensor())
ds_vali, _ = torch.utils.data.random_split(ds_vali, [1000, len(ds_vali) - 1000]) # イマイチな書き方
dl_vali = torch.utils.data.DataLoader(ds_vali, batch_size=128, shuffle=False, num_workers=2)
print(len(ds_vali))
1000
# sec: バリデーション例

model.eval() # 必要 trainのままだとdropoutの効果が残り精度劣化 90.0%で低迷
loss_sum = 0
n_correct = 0
for ds_i in dl_vali:
        
    inputs, labels = ds_i

    with torch.no_grad():
        
        outputs = model(inputs) # 順伝播
        loss = criterion(outputs, labels)
        
        loss_sum += loss.item()
        
        _, preds = torch.max(outputs, dim=1) # (max values, arg indices)
        n_correct += (preds == labels).sum()

# sec: print

print('loss: %.2e, accuracy: %.2f' % (loss_sum / len(ds_vali), float(n_correct) / len(ds_vali) * 100))
loss: 2.43e-04, accuracy: 99.03

1回の評価結果

# sec: 画像を描画

ds_test = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=False, download=True, 
    transform=torchvision.transforms.ToTensor())

x, label = ds_test[np.random.randint(0, len(ds_test))]
plt.imshow(x[0], cmap='gray', interpolation="none")
plt.show()

# sec: 1回の評価

model.eval()
x = x[None] # 1軸を追加
with torch.no_grad():
    y = model(x)

print("予測ラベル:", y.numpy().argmax(axis=1)[0], "| 真値ラベル:", label)

output_23_0.png

予測ラベル: 8 | 真値ラベル: 8

テスト

# sec: データセット

ds_test = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=False, download=True, 
    transform=torchvision.transforms.ToTensor())
dl_test = torch.utils.data.DataLoader(ds_test, batch_size=128, shuffle=False, num_workers=2)
print(len(ds_test))
10000
# sec: テスト例

model.eval()
loss_sum = 0
list_pred, list_label = [], []
for ds_i in dl_test:
        
    inputs, labels = ds_i

    with torch.no_grad():
        
        outputs = model(inputs) # 順伝播
        loss = criterion(outputs, labels)
        
        loss_sum += loss.item()
        
        _, preds = torch.max(outputs, dim=1) # (max values, arg indices)
        list_pred.extend(preds)
        list_label.extend(labels)

list_pred = np.array(list_pred)
list_label = np.array(list_label)

# sec: print

print('loss: %.2e, accuracy: %.2f' % (loss_sum / len(ds_test), (list_pred == list_label).sum() / len(ds_test) * 100))
loss: 2.84e-04, accuracy: 99.03

他のWeb記事のMNISTデータを用いる評価結果で「精度98.13%」程度なので、結果は妥当。
http://torch.classcat.com/2018/07/26/pytorch-040-examples-mnist-cnn/

# sec: precision, recall, fscore, supportを見る

res_prf = sklearn.metrics.precision_recall_fscore_support(list_label, list_pred)

print("precision, recall, fscore, supportを見る:")
print(res_prf)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.bar(np.arange(10) - 0.2, res_prf[0], width=0.4, label="precision")
ax.bar(np.arange(10) + 0.2, res_prf[1], width=0.4, label="recall")
ax.plot(np.arange(10), res_prf[2], 'r_', ms=12, label="f")
ax.legend(fontsize=9, framealpha=0.5, labelspacing=0.2)
ax.set_ylim([0.97, 1.0])
plt.show()
precision, recall, fscore, supportを見る:
(array([0.99084435, 0.99297012, 0.98653846, 0.99303483, 0.98681542,
       0.9877095 , 0.99267782, 0.98736638, 0.99588054, 0.9889669 ]), array([0.99387755, 0.99559471, 0.99418605, 0.98811881, 0.99083503,
       0.99103139, 0.99060543, 0.98832685, 0.99281314, 0.97720515]), array([0.99235863, 0.99428069, 0.99034749, 0.99057072, 0.98882114,
       0.98936766, 0.99164054, 0.98784638, 0.99434447, 0.98305085]), array([ 980, 1135, 1032, 1010,  982,  892,  958, 1028,  974, 1009],
      dtype=int64))

output_28_1.png

# sec: 混同行列を見る

sklearn.metrics.confusion_matrix(list_label, list_pred)
array([[ 974,    0,    1,    0,    0,    0,    4,    1,    0,    0],
       [   0, 1130,    4,    0,    0,    0,    0,    1,    0,    0],
       [   1,    0, 1026,    1,    0,    0,    0,    2,    2,    0],
       [   0,    0,    1,  998,    0,    5,    0,    4,    2,    0],
       [   0,    0,    0,    0,  973,    0,    1,    0,    0,    8],
       [   1,    0,    0,    4,    0,  884,    2,    1,    0,    0],
       [   3,    3,    0,    0,    0,    3,  949,    0,    0,    0],
       [   0,    5,    5,    1,    0,    0,    0, 1016,    0,    1],
       [   2,    0,    3,    0,    0,    0,    0,    0,  967,    2],
       [   2,    0,    0,    1,   13,    3,    0,    4,    0,  986]],
      dtype=int64)

NNモデルパラメータ保存・読込評価

# sec: save

torch.save(model.state_dict(), "results/pytorch-mnist/model.pkl")
# sec: load

model_e = TargetNet()
model_e.load_state_dict(torch.load("results/pytorch-mnist/model.pkl"))
<All keys matched successfully>
model_e.state_dict()
OrderedDict([('conv1.weight', tensor([[[[-0.1193, -0.1967,  0.0337],
                        [-0.2103,  0.2067,  0.3707],
                        [-0.0072,  0.2572, -0.0811]]],
              
              
                      [[[ 0.2073,  0.0639, -0.2909],
                        [ 0.2432, -0.2954, -0.1945],
                        [ 0.0062, -0.1348,  0.1976]]],
              
              
                      [[[ 0.2244,  0.2394,  0.2029],
                        [ 0.0774, -0.1356, -0.1406],
                        [-0.1890, -0.1105, -0.2486]]],
              
              
                      [[[-0.0757, -0.1669, -0.3270],
                        [ 0.2795,  0.2242,  0.1612],
                        [-0.0702,  0.2889,  0.0423]]],
              
              
                      [[[-0.0672,  0.1286, -0.2042],
                        [-0.0348, -0.2120, -0.2940],
                        [-0.3711, -0.1960,  0.1867]]]])),
             ('conv1.bias',
              tensor([ 0.0740,  0.0062,  0.1578, -0.1330,  0.2352])),
             ('conv2.weight', tensor([[[[-0.1560, -0.1605, -0.0265],
                        [ 0.2078,  0.0014, -0.1418],
                        [ 0.0111,  0.0764, -0.0443]],
              
                       [[-0.0406, -0.0301, -0.0977],
                        [-0.0876, -0.1847, -0.2042],
                        [ 0.0244,  0.1091, -0.1029]],
              
                       ...(略)...
              
                       [[-1.2396e-01, -4.7989e-02,  6.0982e-03],
                        [ 1.0323e-01,  7.4295e-02,  4.4253e-02],
                        [ 1.0707e-01,  1.2724e-01,  1.9893e-01]],
              
                       [[-5.0636e-02, -1.1169e-01, -1.8197e-02],
                        [ 8.4612e-02, -4.1535e-02,  5.4119e-03],
                        [-5.3175e-03, -9.3789e-02,  2.2890e-02]],
              
                       [[ 7.8540e-02, -1.1353e-01, -1.2255e-01],
                        [ 1.1991e-02, -6.8789e-02, -1.7400e-01],
                        [ 9.7441e-05, -8.2435e-02,  4.7667e-03]]]])),
             ('conv4.bias',
              tensor([ 0.0580, -0.0452, -0.0356, -0.0077, -0.0707, -0.0301, -0.0416,  0.0149,
                       0.1250,  0.0470,  0.0371, -0.0528, -0.0887, -0.0169,  0.0178,  0.0726,
                      -0.0794,  0.0061, -0.0065,  0.0043])),
             ('bn1.weight', tensor([0.9750, 1.0013, 0.9576, 0.9376, 1.2138])),
             ('bn1.bias',
              tensor([-0.0668, -0.0248,  0.1255,  0.1388,  0.2274])),
             ('bn1.running_mean',
              tensor([ 0.1101, -0.0276,  0.1465, -0.0831,  0.0740])),
             ('bn1.running_var',
              tensor([0.0280, 0.0244, 0.0326, 0.0298, 0.0951])),
             ('bn1.num_batches_tracked', tensor(4690)),
             ('bn2.weight',
              tensor([1.1731, 0.8839, 0.8436, 1.0764, 1.0680, 1.0759, 0.9479, 0.8768, 1.1014,
                      0.9595])),
             ('bn2.bias',
              tensor([-2.8445e-01, -4.5570e-02,  2.4080e-04, -6.8240e-03, -1.9356e-02,
                      -9.8832e-02, -3.8079e-02, -1.0984e-01, -1.7605e-01,  1.1987e-01])),
             ('bn2.running_mean',
              tensor([-0.2551, -0.3085,  0.6618,  0.3906, -0.5419, -0.8479,  0.0599, -0.3507,
                      -0.1456, -0.0181])),
             ('bn2.running_var',
              tensor([0.2021, 0.7583, 0.4969, 0.4905, 0.2947, 0.1725, 0.2593, 0.2616, 0.2963,
                      0.2185])),
             ('bn2.num_batches_tracked', tensor(4690)),
             ('bn3.weight',
              tensor([1.0696, 0.8160, 0.9060, 1.0633, 1.0389, 0.9895, 0.8915, 0.8183, 1.1316,
                      0.9516, 0.9707, 0.8907, 1.0231, 0.8617, 1.0554])),
             ('bn3.bias',
              tensor([-0.2997, -0.0583, -0.2442, -0.0981, -0.2548, -0.2014, -0.1782, -0.2454,
                      -0.3477, -0.0327, -0.2671, -0.3008, -0.3205, -0.5982, -0.1280])),
             ('bn3.running_mean',
              tensor([-0.9035,  0.2130,  0.2813, -1.3235, -0.5512,  0.0552, -0.1724,  0.1172,
                      -1.5437, -0.0501, -0.5553, -0.0547, -1.1366,  0.3776, -1.5574])),
             ('bn3.running_var',
              tensor([0.6823, 0.9488, 0.7111, 1.3630, 1.0511, 0.8177, 1.0470, 1.0047, 1.1058,
                      1.9996, 1.1460, 1.3993, 1.0603, 0.4562, 1.7725])),
             ('bn3.num_batches_tracked', tensor(4690)),
             ('bn4.weight',
              tensor([1.2947, 1.3268, 1.2583, 1.2611, 1.2759, 1.3348, 1.3097, 1.3204, 1.3608,
                      1.2124, 1.3248, 1.2563, 1.3738, 1.2736, 1.2208, 1.2850, 1.3084, 1.3131,
                      1.2993, 1.2804])),
             ('bn4.bias',
              tensor([-0.5450, -0.5422, -0.3926, -0.4930, -0.5669, -0.4537, -0.5399, -0.5409,
                      -0.5684, -0.4720, -0.5032, -0.5454, -0.5353, -0.4670, -0.4292, -0.5145,
                      -0.3628, -0.6174, -0.5858, -0.4986])),
             ('bn4.running_mean',
              tensor([ 0.4598,  0.2837, -0.1339,  0.0366, -0.3407,  0.1557,  0.2131, -0.6676,
                       0.0993,  0.9765,  0.7372,  0.2057, -0.3129, -0.2075,  0.2524, -0.2052,
                       0.7763, -0.3153, -0.8190,  0.8294])),
             ('bn4.running_var',
              tensor([0.2823, 0.3211, 0.3877, 0.3735, 0.2755, 0.3754, 0.3229, 0.3310, 0.3055,
                      0.2756, 0.4847, 0.3380, 0.3030, 0.3383, 0.3769, 0.2427, 0.5124, 0.2893,
                      0.3855, 0.3065])),
             ('bn4.num_batches_tracked', tensor(4690)),
             ('fc1.weight',
              tensor([[ 0.1167,  0.1003,  0.1363,  ..., -0.0632, -0.1001, -0.1384],
                      [ 0.0219,  0.0128,  0.0546,  ..., -0.0419,  0.0384,  0.1337],
                      [ 0.0895,  0.0410,  0.0538,  ...,  0.0491,  0.0248, -0.1246],
                      ...,
                      [ 0.0377,  0.0342,  0.0202,  ..., -0.0412,  0.0019,  0.0041],
                      [ 0.0659,  0.0783,  0.0530,  ...,  0.0059,  0.0661,  0.0319],
                      [ 0.0553,  0.0511, -0.0325,  ...,  0.0109, -0.0564, -0.1748]])),
             ('fc1.bias',
              tensor([-0.0930, -0.0096, -0.0934, -0.0489,  0.1413,  0.0640,  0.0702,  0.0313,
                       0.0491,  0.1809,  0.0214, -0.1256,  0.0015,  0.0511,  0.0580,  0.0494,
                      -0.0177, -0.0066,  0.0417,  0.0478])),
             ('fc2.weight',
              tensor([[-0.3481,  0.1943, -0.1167, -0.3848,  0.2522, -0.5797, -0.3552,  0.2499,
                       -0.4902,  0.1876, -0.6010,  0.1155,  0.1638, -0.3284, -0.3364,  0.2158,
                       -0.3198,  0.1905,  0.2642, -0.1496],
                      [-0.4746, -0.5199, -0.3840, -0.2805,  0.2469,  0.2020,  0.2321, -0.3990,
                        0.2874,  0.2119, -0.4917, -0.2028, -0.3293, -0.4795,  0.2659, -0.4735,
                       -0.3607, -0.2774, -0.3733,  0.2061],
                      [ 0.1365, -0.1580, -0.2591, -0.1550, -0.3192, -0.4425,  0.2455, -0.2653,
                       -0.3550, -0.1905,  0.0099,  0.1221,  0.2218, -0.3097,  0.3020, -0.2191,
                       -0.3595,  0.1949, -0.2289, -0.3345],
                      [ 0.1819, -0.2019, -0.5650,  0.2102, -0.2937, -0.3966,  0.1748, -0.4076,
                        0.2246,  0.2166,  0.2953, -0.4493,  0.1728, -0.2740, -0.0933,  0.2476,
                        0.2063, -0.1891, -0.1732, -0.3121],
                      [-0.4458, -0.6537,  0.1651,  0.1682, -0.2137,  0.2296,  0.1956,  0.2499,
                        0.3215, -0.3628,  0.2233,  0.1229, -0.4657,  0.0259, -0.2530, -0.4996,
                        0.1364, -0.0745, -0.2714, -0.0395],
                      [ 0.1569,  0.2018, -0.2388,  0.1967,  0.2599,  0.1737, -0.4559, -0.2330,
                       -0.1793, -0.0934, -0.1260, -0.3630, -0.2875, -0.2901, -0.4317,  0.2435,
                        0.2380, -0.1329,  0.2140,  0.2101],
                      [-0.2263, -0.0485,  0.1833, -0.5683,  0.3253, -0.1906, -0.3670,  0.0325,
                       -0.2744, -0.3122, -0.4359,  0.1418, -0.3495, -0.6060, -0.4037, -0.1927,
                        0.2340,  0.2258, -0.2329,  0.2628],
                      [-0.2519,  0.1679, -0.3764,  0.1616, -0.3912, -0.3314,  0.2476,  0.1835,
                       -0.1459,  0.1911,  0.2524, -0.3639, -0.1660,  0.1537,  0.2604, -0.2612,
                       -0.4262, -0.3990,  0.2768, -0.5895],
                      [ 0.1794,  0.2254,  0.1708, -0.1893, -0.0620, -0.2753, -0.1750, -0.0990,
                       -0.1114, -0.3117,  0.2690, -0.2005,  0.1797,  0.1494, -0.3352, -0.1336,
                       -0.0673,  0.1785, -0.1971,  0.2140],
                      [ 0.1075,  0.0880,  0.1336,  0.1675, -0.3566,  0.1433, -0.1642,  0.2479,
                        0.2795, -0.3182, -0.2066, -0.1676, -0.2736,  0.1719, -0.2884,  0.1781,
                       -0.2009, -0.2304,  0.2601, -0.2920]])),
             ('fc2.bias',
              tensor([-0.3426,  0.7404,  0.7441, -0.2981, -0.2907, -0.5408, -0.0061,  0.0115,
                      -0.1341, -0.0474]))])
# sec: データセット

ds_test = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=False, download=True, 
    transform=torchvision.transforms.ToTensor())
dl_test = torch.utils.data.DataLoader(ds_test, batch_size=128, shuffle=False, num_workers=2)
print(len(ds_test))
10000
# sec: 評価

model_e.eval()
loss_sum = 0
n_correct = 0
for ds_i in dl_test:
        
    inputs, labels = ds_i

    with torch.no_grad():
        
        outputs = model_e(inputs) # 順伝播
        loss = criterion(outputs, labels)
        
        loss_sum += loss.item()
        
        _, preds = torch.max(outputs, dim=1) # (max values, arg indices)
        n_correct += (preds == labels).sum()

# sec: print

print('loss: %.2e, accuracy: %.2f' % (loss_sum / len(ds_test), float(n_correct) / len(ds_test) * 100))
loss: 2.43e-04, accuracy: 99.20

最適計算パラメータ保存・計算再開

# sec: save

torch.save({
    'epoch': n_ep,
    'model_state_dict': model.state_dict(),
    'optimizer_state_dict': optimizer.state_dict(),
    'loss': loss }, 
    "results/pytorch-mnist/model&opt.pkl")

ここでJupyterの実行中のPythonのカーネルをリスタート可。

Libs

import numpy as np
import matplotlib.pyplot as plt

import torch
import torchvision

NNモデモ

import torch.nn as nn
import torch.nn.functional as F

class MyConvNet1(nn.Module):
    
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 5, 3, stride=1, padding=0)
        self.conv2 = nn.Conv2d(5, 10, 3, stride=1, padding=0)
        self.conv3 = nn.Conv2d(10, 15, 3, stride=1, padding=0)
        self.conv4 = nn.Conv2d(15, 20, 3, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(5)
        self.bn2 = nn.BatchNorm2d(10)
        self.bn3 = nn.BatchNorm2d(15)
        self.bn4 = nn.BatchNorm2d(20)
        self.pool1 = nn.MaxPool2d(2)
        self.pool2 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(20*4*4, 20)
        self.fc2 = nn.Linear(20, 10)
        self.drop1 = nn.Dropout(0.5)
        self.drop2 = nn.Dropout(0.5)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool1(x)
        x = F.relu(self.bn3(self.conv3(x)))
        x = F.relu(self.bn4(self.conv4(x)))
        x = self.pool2(x)
        x = x.view(-1, 20*4*4)
        x = F.relu(self.fc1(self.drop1(x)))
        x = self.fc2(self.drop2(x))
        return x

TargetNet = MyConvNet1
# sec: load

model = TargetNet()
optimizer = torch.optim.Adam(model.parameters())

d = torch.load("results/pytorch-mnist/model&opt.pkl")
model.load_state_dict(d['model_state_dict'])
optimizer.load_state_dict(d['optimizer_state_dict'])
n_ep = d['epoch']
loss = d['loss']
# sec: 内容を確認

optimizer.state_dict()
{'state': {2202322517592: {'step': 4690,
   'exp_avg': tensor([[[[ 4.9681e-03, -1.3392e-02, -1.1919e-02],
             [-1.8946e-02, -1.5522e-02,  3.7579e-03],
             [-2.7534e-02, -1.6930e-02, -3.9333e-05]]],
   
   
           [[[ 8.3556e-03,  8.2333e-03, -4.6917e-03],
             [ 8.6733e-03,  1.3580e-02,  1.3980e-03],
             [-1.4740e-02, -1.8268e-02, -2.1180e-02]]],
   
   
           [[[ 2.6981e-02,  2.1422e-02,  8.6973e-03],
             [ 2.2680e-02,  2.4799e-02,  1.8023e-02],
             [ 1.1921e-02,  1.9067e-02,  2.0821e-02]]],
   
   
           [[[ 2.6852e-02,  2.1411e-02,  2.4557e-02],
             [ 2.6102e-02,  1.6432e-02,  1.0814e-02],
             [ 2.2461e-02,  9.3432e-03, -1.2549e-02]]],
   
   
           [[[ 1.7876e-03,  3.0547e-03,  9.6555e-03],
             [-2.2322e-03, -2.0686e-03,  2.5197e-03],
             [-2.8117e-03, -6.4745e-03, -2.8697e-03]]]]),
   'exp_avg_sq': tensor([[[[0.0133, 0.0118, 0.0097],
             [0.0132, 0.0078, 0.0049],
             [0.0131, 0.0075, 0.0063]]],
   
   
           [[[0.0202, 0.0155, 0.0092],
             [0.0155, 0.0083, 0.0045],
             [0.0224, 0.0151, 0.0118]]],
   
   
           [[[0.0066, 0.0051, 0.0060],
             [0.0069, 0.0056, 0.0052],
             [0.0061, 0.0047, 0.0038]]],
   
   
           [[[0.0056, 0.0047, 0.0053],
             [0.0032, 0.0026, 0.0039],
             [0.0025, 0.0015, 0.0030]]],
   
   
           [[[0.0048, 0.0020, 0.0013],
             [0.0007, 0.0001, 0.0004],
             [0.0001, 0.0003, 0.0017]]]])},
  2202322517672: {'step': 4690,
   'exp_avg': tensor([-1.5162e-06, -1.2697e-06, -1.2059e-07, -4.3583e-06,  6.9085e-07]),
   'exp_avg_sq': tensor([8.3501e-10, 1.5377e-11, 3.3076e-12, 3.5197e-10, 6.3042e-12])},
  2202322517272: {'step': 4690,
   'exp_avg': tensor([[[[-3.1205e-03,  1.0635e-02,  1.7947e-02],
             [ 3.0011e-02,  4.7265e-02,  5.7637e-02],
             [ 4.3873e-02,  4.3586e-02,  5.4873e-02]],
   
            [[ 1.4990e-02,  8.2882e-03, -5.3019e-04],
             [ 6.4136e-03,  1.4983e-03, -3.0395e-03],
             [ 9.1574e-04, -3.6870e-03, -1.4301e-02]],
   
            [[ 1.5993e-02,  1.2531e-02,  8.5470e-03],
             [-3.2829e-03, -3.5228e-03, -1.0266e-02],
             [-2.1787e-03, -4.9055e-03,  8.4147e-03]],
   
            [[ 1.3000e-02,  1.4188e-02,  2.3311e-02],
             [ 5.2523e-02,  5.6909e-02,  6.5983e-02],
             [ 7.4201e-02,  6.4654e-02,  5.4315e-02]],
   
            [[-1.1624e-02, -1.2903e-02, -1.5316e-02],
             [-2.2582e-02, -1.3517e-02, -1.4352e-02],
             [-1.2509e-02, -1.4768e-02, -2.3715e-02]]],
   
           ...(略)...
           
  2202322530536: {'step': 4690,
   'exp_avg': tensor([ 0.0005, -0.0052,  0.0022,  0.0002,  0.0017,  0.0033, -0.0029,  0.0005,
           -0.0030,  0.0028]),
   'exp_avg_sq': tensor([0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001,
           0.0001])}},
 'param_groups': [{'lr': 0.001,
   'betas': (0.9, 0.999),
   'eps': 1e-08,
   'weight_decay': 0,
   'amsgrad': False,
   'params': [2202322517592,
    2202322517672,
    2202322517272,
    2202322517192,
    2202322516952,
    2202322516792,
    2202322517032,
    2202322514152,
    2202322489656,
    2202322491896,
    2202322492216,
    2202322492296,
    2202322492616,
    2202322492696,
    2202322493016,
    2202322493096,
    2202322493336,
    2202322530376,
    2202322530456,
    2202322530536]}]}

最適化の内部の状態変数もすべて保存される模様。

学習ループ再開

# sec: データセット

ds_train = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=True, download=True, 
    transform=torchvision.transforms.ToTensor())
dl_train = torch.utils.data.DataLoader(ds_train, batch_size=128, shuffle=True, num_workers=2)
print(len(ds_train))
# sec: 学習再開

criterion = nn.CrossEntropyLoss()

model.train()
for i_ep in range(n_ep, n_ep + 10): # loop over the dataset multiple times

    loss_sum = 0.0
    for ds_i in dl_train:
        
        inputs, labels = ds_i

        optimizer.zero_grad()
        outputs = model(inputs) # 順伝播
        loss = criterion(outputs, labels)
        loss.backward() # 逆伝播
        optimizer.step()

        loss_sum += loss.item()
    
    # sec: print
    
    print('%dep loss: %.5f' % (i_ep + 1, loss_sum / len(ds_train)))

n_ep = i_ep + 1
print('Finished Training')
11ep loss: 0.00227
12ep loss: 0.00225
13ep loss: 0.00220
14ep loss: 0.00220
15ep loss: 0.00215
16ep loss: 0.00211
17ep loss: 0.00207
18ep loss: 0.00207
19ep loss: 0.00204
20ep loss: 0.00204
Finished Training

初回学習では「10ep loss: 0.00232」で終わっていた状態。「11ep loss: 0.00227」から始まり、最適化の続きが開始されている模様。

# sec: データセット

ds_test = torchvision.datasets.MNIST(root="trains/pytorch-mnist", train=False, download=True, 
    transform=torchvision.transforms.ToTensor())
dl_test = torch.utils.data.DataLoader(ds_test, batch_size=128, shuffle=False, num_workers=2)
print(len(ds_test))
10000
# sec: テスト例

model.eval()
loss_sum = 0
list_pred, list_label = [], []
for ds_i in dl_test:
        
    inputs, labels = ds_i

    with torch.no_grad():
        
        outputs = model(inputs) # 順伝播
        loss = criterion(outputs, labels)
        
        loss_sum += loss.item()
        
        _, preds = torch.max(outputs, dim=1) # (max values, arg indices)
        list_pred.extend(preds)
        list_label.extend(labels)

list_pred = np.array(list_pred)
list_label = np.array(list_label)

# sec: print

print('loss: %.2e, accuracy: %.2f' % (loss_sum / len(ds_test), (list_pred == list_label).sum() / len(ds_test) * 100))
loss: 2.48e-04, accuracy: 99.03

他のWeb記事のMNISTデータを用いる評価結果で「精度98.13%」程度なので、結果は妥当。
http://torch.classcat.com/2018/07/26/pytorch-040-examples-mnist-cnn/

# sec: precision, recall, fscore, supportを見る

res_prf = sklearn.metrics.precision_recall_fscore_support(list_label, list_pred)

print("precision, recall, fscore, supportを見る:")
print(res_prf)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.bar(np.arange(10) - 0.2, res_prf[0], width=0.4, label="precision")
ax.bar(np.arange(10) + 0.2, res_prf[1], width=0.4, label="recall")
ax.plot(np.arange(10), res_prf[2], 'r_', ms=12, label="f")
ax.legend(fontsize=9, framealpha=0.5, labelspacing=0.2)
ax.set_ylim([0.97, 1.0])
plt.show()
precision, recall, fscore, supportを見る:
(array([0.99084435, 0.99297012, 0.98653846, 0.99303483, 0.98681542,
       0.9877095 , 0.99267782, 0.98736638, 0.99588054, 0.9889669 ]), array([0.99387755, 0.99559471, 0.99418605, 0.98811881, 0.99083503,
       0.99103139, 0.99060543, 0.98832685, 0.99281314, 0.97720515]), array([0.99235863, 0.99428069, 0.99034749, 0.99057072, 0.98882114,
       0.98936766, 0.99164054, 0.98784638, 0.99434447, 0.98305085]), array([ 980, 1135, 1032, 1010,  982,  892,  958, 1028,  974, 1009],
      dtype=int64))

output_53_1.png

# sec: 混同行列を見る

sklearn.metrics.confusion_matrix(list_label, list_pred)
array([[ 974,    0,    1,    0,    0,    0,    4,    1,    0,    0],
       [   0, 1130,    4,    0,    0,    0,    0,    1,    0,    0],
       [   1,    0, 1026,    1,    0,    0,    0,    2,    2,    0],
       [   0,    0,    1,  998,    0,    5,    0,    4,    2,    0],
       [   0,    0,    0,    0,  973,    0,    1,    0,    0,    8],
       [   1,    0,    0,    4,    0,  884,    2,    1,    0,    0],
       [   3,    3,    0,    0,    0,    3,  949,    0,    0,    0],
       [   0,    5,    5,    1,    0,    0,    0, 1016,    0,    1],
       [   2,    0,    3,    0,    0,    0,    0,    0,  967,    2],
       [   2,    0,    0,    1,   13,    3,    0,    4,    0,  986]],
      dtype=int64)

保存・読込

# sec: save

torch.save(model.state_dict(), "results/pytorch-mnist/model2.pkl")
# sec: load

model = TargetNet()
model.load_state_dict(torch.load("results/pytorch-mnist/model2.pkl"))
<All keys matched successfully>
7
12
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
7
12

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?