0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

[001] RC回路のステップ応答~ラプラス変換(積分形)~

Last updated at Posted at 2023-09-25

tex記法とMarkdown記法の練習を兼ねて,図1のRC回路のステップ応答を求めてみる.

キルヒホッフの電圧則より,
$$E=Ri(t)+\frac{1}{C}\int i(t) dt$$

$\mathcal{L}[i(t)]=I(s)$として,両辺をラプラス変換すると,

$$\frac{E}{s}=RI(s)+\frac{1}{C}\left [ \frac{I(s)+q(0)}{s} \right ]$$

コンデンサの初期電荷はないものとして(すなわち$q(0)=0$として),$I(s)$について式を整理すると,

$$I(s)=\frac{E}{s} \cdot \frac{1}{R+\frac{1}{sC}}=\frac{E}{R} \cdot \frac{1}{s+\frac{1}{RC}}$$
逆ラプラス変換で$i(t)$を求めると,

$$\therefore i(t)=\mathcal{L}^{-1}[I(s)]=\frac{E}{R}e^{-\frac{1}{RC}t}$$

コンデンサCの電圧$v_o(t)$は,
$$v_o(t)=\frac{1}{C}\int i(t)dt=-Ee^{-\frac{1}{RC}t}+C$$
$v_o(0)=0$であるから,積分定数$C$は,

$$v_o(0)=-Ee^{-0}+C=0 \to C=E$$

したがって,
$$\therefore v_o(t)=E\left(1-e^{-\frac{1}{RC}t}\right)$$

電流$i(t)$と電圧$v_o(t)$を再掲すると,

\begin{align}
i(t)&=\frac{E}{R}e^{-\frac{1}{RC}t} \\
v_o(t)&=E\left(1-e^{-\frac{1}{RC}t}\right)
\end{align}
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?