0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

[002] RC回路のステップ応答~ラプラス変換(微分形)~

Last updated at Posted at 2023-09-25

tex記法とMarkdown記法の練習を兼ねて,図1のRC回路のステップ応答を求めてみる.

コンデンサ$C$に流れる電流$i(t)$は,
$$i(t)=C\frac{dv_o(t)}{dt}$$

と表される.
この式を使って,キルヒホッフの電圧則を表すと,

$$E=RC\frac{dv_o(t)}{dt}+v_o(t)$$

$\mathcal{L}[v_o(t)]=V_o(s)$として,両辺をラプラス変換すると,

$$\frac{E}{s}=RC[sV_o(s)-v_o(0)]+V_o(s)$$

コンデンサの初期電荷はないものとして(すなわち$v(0)=q(0)/C=0$として),$V_o(s)$について式を整理すると,

\begin{align}
V_o(s)&=\frac{E}{s} \cdot \frac{1}{1+sRC}\\
&=E\left( \frac{1}{s} - \frac{RC}{1+sRC}\right)\\
&=E\left( \frac{1}{s} - \frac{1}{s+\frac{1}{RC}}\right)
\end{align}

逆ラプラス変換で$v_o(t)$を求めると,
$$\therefore v_o(t)=E\left(1-e^{-\frac{1}{RC}t}\right)$$

$i(t)$は$v_o(t)$の時間微分より,
$$\therefore i(t)=C\frac{dv_o(t)}{dt}=\frac{E}{R}e^{-\frac{1}{RC}t}$$

電圧$v_o(t)$と電流$i(t)$を再掲すると,

\begin{align}
v_o(t)&=E\left(1-e^{-\frac{1}{RC}t}\right)\\
i(t)&=\frac{E}{R}e^{-\frac{1}{RC}t} 

\end{align}
0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?