5
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

RでEMアルゴリズムによる混合ベルヌーイモデル最尤推定

Last updated at Posted at 2013-03-25

PRML 9.3.3に記載の通り、EMアルゴリズムによって混合ベルヌーイモデルの最尤推定が行われる過程と、対数尤度関数の収束の様子を示します。

10次元2値サンプルを、3種のベルヌーイ分布に従って、150サンプルずつ順に生成し、それらのサンプルに対する対数尤度を最大化します。EMステップ毎に、各サンプルについて、その混合要素のうち、最大の負担率γ(z_nk)の値を、その混合要素を示す色で記します。また、各混合要素について、ベルヌーイ分布のパラメータμkの値を示します。

また、MNISTの手書き数字文字データから生成した784(=28x28)次元2値データについて、数字2,3,4を各150サンプルずつ利用し、それらのサンプルに対する対数尤度を最大化します。

frame()
set.seed(0)
par(mfrow=c(8, 4))
par(mar=c(2.3, 2.5, 1, 0.1))
par(mgp=c(1.3, .5, 0))
MNIST <- F  # to load the MNIST handwritten digits
K <- 3
N <- 450

rbern <- function(mu) {
	ifelse(runif(length(mu)) < mu, 1, 0)
}
logdbern <- function(x, mu) {
	sum(log(mu ^ x * (1 - mu) ^ (1 - x)))
}
logsumexp <- function (x) {
  m <- max(x)
  m + log(sum(exp(x - m)))
}

if (MNIST) {
	# the following code is taken from https://gist.github.com/brendano/39760
	load_mnist <- function() {
	  load_image_file <- function(filename) {
	    ret = list()
	    f = file(filename,'rb')
	    readBin(f,'integer',n=1,size=4,endian='big')
	    ret$n = readBin(f,'integer',n=1,size=4,endian='big')
	    nrow = readBin(f,'integer',n=1,size=4,endian='big')
	    ncol = readBin(f,'integer',n=1,size=4,endian='big')
	    x = readBin(f,'integer',n=ret$n*nrow*ncol,size=1,signed=F)
	    ret$x = matrix(x, ncol=nrow*ncol, byrow=T)
	    close(f)
	    ret
	  }
	  load_label_file <- function(filename) {
	    f = file(filename,'rb')
	    readBin(f,'integer',n=1,size=4,endian='big')
	    n = readBin(f,'integer',n=1,size=4,endian='big')
	    y = readBin(f,'integer',n=n,size=1,signed=F)
	    close(f)
	    y
	  }
	  train <<- load_image_file('mnist/train-images-idx3-ubyte')
	  train$y <<- load_label_file('mnist/train-labels-idx1-ubyte')
	}
	# the data is available at http://yann.lecun.com/exdb/mnist/
	# extract the files in the "mnist" directory
	setwd("C:/Users/Public/Documents")
	load_mnist()
	x <- floor(rbind(
		train$x[train$y == 2, ][1:(N / 3), ],  
		train$x[train$y == 3, ][1:(N / 3), ],  
		train$x[train$y == 4, ][1:(N / 3), ]) / 128)
	D <- ncol(x)
} else {
	PHI <- 0.9
	PLO <- 0.1
	muorg <- matrix(c(
		PHI, PHI, PHI, PHI, PHI, PLO, PLO, PLO, PLO, PLO, 
		PLO, PLO, PLO, PLO, PLO, PHI, PHI, PHI, PHI, PHI, 
		PHI, PHI, PHI, PLO, PLO, PLO, PLO, PHI, PHI, PHI
		), 3, byrow=T)
	z <- rep(1:3, each=N/3)
	x <- rbern(muorg[z, ])
	D <- 10
}
image(1:N, 1:D, x, xlab="n", ylab="i", breaks=seq(0, 1, 0.1), 
	col=hsv(0, seq(0.1, 1, 0.1), 1))
title("sample")

mu <- matrix(runif(D * K), K, byrow=T)
pz <- rep(1 / K, K)
gamma <- matrix(NA, nrow=N, ncol=K)
likelihood <- numeric()

iteration <- 0
repeat {
	cat("mu\n");print(mu)
	cat("pi\n");print(pz)
	
	if (!is.na(gamma[1, 1])) {
		plot(apply(gamma, 1, max), col=hsv(apply(gamma, 1, which.max) / K, 1, 1), 
			ylim=c(0, 1.05), pch=20, xlab="n", ylab=expression(gamma(z_nk)))
		title(paste0("gamma#", iteration))
	}
	
	if (MNIST) {
		image(1:28, 1:(28*K), matrix(as.vector(t(mu + rep(0:(K-1), D) + 1.0E-8)), nrow=28)[, (28*K):1], 
			axes=F, xlab="i", ylab="k", 
			breaks=seq(0, K, 0.1), 
			col=outer(seq(0.1, 1, 0.1), (1:K)/K, function(x1, x2) hsv(x2, x1, 1)))
		axis(1)
		axis(2, at=0:(K-1) * 28 + 14, labels=1:K)
	} else {
		image(1:K, 1:D, mu + rep(0:(K-1), D) + 1.0E-8, 
			axes=F, xlab="k", ylab="i",
			breaks=seq(0, K, 0.1), 
			col=outer(seq(0.1, 1, 0.1), (1:K)/K, function(x1, x2) hsv(x2, x1, 1)))
		axis(1, at=1:K)
		axis(2)
	}
	title(paste0("mu#", iteration))

	# E step
	for (n in 1:N) {
		pzx <- sapply(
			1:K, 
			function(k) log(pz[k]) + logdbern(x[n, ], mu[k, ])
			)
		pzx <- pzx - max(pzx)
		gamma[n, ] <- exp(pzx) / sum(exp(pzx))
	}
	
	# M step
	nk <- colSums(gamma)
	for (k in 1:K) {
		mu[k, ] <- colSums(x * gamma[, k]) / nk[k]
		pz[k] <- nk[k] / N
	}
	
	# likelihood
	likelihood <- c(likelihood, sum(sapply(1:N, function(n)
			logsumexp(sapply(
				1:K, 
				function(k)
					log(pz[k]) + logdbern(x[n, ], mu[k, ])
				))
			)))
	
	if (length(likelihood) > 1 
		&& likelihood[length(likelihood)] - likelihood[length(likelihood) - 1] < 1.0E-2) {
		break
	}
	iteration <- iteration + 1
}

plot(likelihood, type="l", xlab="iteration", ylab="ln p(X)")
title("ln p(X)")
5
5
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
5
5

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?