0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Top 5 abstract algebra topics - hard to understand - according to reddit/math

Posted at

We should keep building educational toy app for kids about abstract algebra - here is the starting point as reddit.com data - people's voice


Here are the top 5 abstract algebra topics that, according to Reddit users in subreddits like r/math and r/mathematics, many people find particularly difficult to understand:


1. Working in the purely abstract / symbolic mode

Many learners struggle with doing algebra without concrete examples or context. As one redditor in r/mathematics put it:

“I think the difficulty most people find with abstract algebra is simply not understanding how to work purely symbolically, and without any context to the variables/symbols you are working with.” (Reddit)


2. Understanding homomorphisms and quotient constructions

Concepts like morphisms, kernels, and changing operations (e.g., between addition and multiplication) are common stumbling blocks:

“I don’t know where to start with … morphisms and changing the operation with addition and multiplication groups are confusing.” (Reddit)

Without a strong grasp of these foundational ideas, moving into deeper topics like quotient groups or isomorphism-related theorems becomes very tough.


3. Building mathematical maturity and proof skills

Redditors frequently note that abstract algebra's difficulty often stems from the increased demand for proof-based reasoning and logical rigor:

  • One user reflected that abstract algebra can seem “un‑learnable” at first, particularly if you're lacking proof or logic background:

“Yes, generally speaking lots of people who first encounter … Abstract Algebra talk about how hard it is, mainly because these people are learning how to prove things and it is a new skill…” (Reddit, Reddit)

  • Another stressed the need for mathematical maturity:

“No, but without some background in proof and logic, I can see that it would be quite difficult. That’s the ‘mathematical maturity’ part…” (Reddit)


4. Inadequate background in linear algebra and set theory

Several comments point to difficulties stemming from gaps in prerequisite knowledge:

  • On linear algebra:

“I believe difficulty with abstract algebra are often because of a misunderstanding in linear algebra. Make sure you have a solid background in vector spaces first.” (Reddit)

  • On set theory, particularly the foundational concepts like bijections and equivalence relations:

“Understanding those concepts … really makes it easier to understand things like homomorphisms and quotient groups, which are a big part of abstract algebra.” (Reddit)


5. Seeing the purpose—finding motivation and practical value

A few learners express difficulty in understanding why the subject matters:

“As a humble beginner in group theory, I struggle to see its practical value beyond categorization…” (Reddit)

While responses emphasize that group theory underpins deep mathematical results—as in cryptography, topology, and number theory—lack of early motivation can raise the hurdle for students.


Summary Table

Topic Why It's Tricky
Purely symbolic abstraction Hard to engage without concrete intuition or examples
Homomorphisms & quotient constructions Requires understanding structure-preserving maps and resulting objects
Proofs & mathematical maturity Demands new skills in logic, rigor, and abstract thinking
Background gaps (linear algebra/set theory) Missing foundational tools makes jumping in overwhelming
Motivation & practical context Abstract definitions can feel pointless without clear application

了解しました!先ほどの「Reddit で人々が理解に苦しむ抽象代数学のトピック Top 5」を日本語に翻訳します。


Redditでよく挙げられる「理解が難しい抽象代数学トピック」Top 5


① 純粋に抽象的・記号的に考えること

多くの学習者は、具体例や文脈がない状態で代数を進めることに苦労します。
ある redditor は次のように述べています:

「抽象代数学が難しいと感じるのは、純粋に記号だけを扱い、変数やシンボルに文脈がまったくない状態で作業する方法を理解できないからだと思う。」


② 準同型写像や剰余構成の理解

準同型・核・写像・演算の切り替え(加法群や乗法群の扱いなど)は、多くの人がつまずくテーマです。

「準同型や、加法群と乗法群での演算の切り替えが混乱する。どこから始めればいいか分からない。」

これらが理解できないと、剰余群や同型定理といったテーマに進むのが非常に難しくなります。


③ 数学的成熟度(proof skill)の必要性

抽象代数学の難しさは「証明ベースの推論や論理的厳密さを求められる」点にあると redditors は指摘します。

・あるユーザーはこう述べています:

「抽象代数学は最初は『学べない』ように見える。特に証明の仕方や論理を学んでいない人にとっては新しいスキルだから。」

・別のユーザーは「数学的成熟度(mathematical maturity)」の重要性を強調しました:

「証明や論理の基礎がなければ難しいと感じるのも当然。それがいわゆる数学的成熟度という部分だ。」


④ 線形代数学や集合論の基礎不足

前提知識が足りないことがつまずきの大きな原因になります。

・線形代数学について:

「抽象代数学の難しさは、多くの場合、線形代数学の誤解からきている。まずベクトル空間の基礎をしっかり学ぶべき。」

・集合論について(特に全単射や同値関係など):

「これらの概念を理解すると、準同型や剰余群といった抽象代数学の大きなテーマが格段に分かりやすくなる。」


⑤ モチベーション・実用性の理解不足

一部の学習者は「この学問が何の役に立つのか?」という疑問に苦しみます。

「群論の初心者として、分類以外に実用性があるのかどうか分からない。」

実際には暗号理論・位相幾何学・数論など多くの応用がありますが、学び始めの段階でそれが見えないと学習の障害になります。


まとめ表

トピック 難しさの理由
抽象的な記号操作 具体例がないと直感が持ちにくい
準同型写像・剰余構成 構造を保つ写像や生成される新しい対象を理解する必要がある
証明スキル・数学的成熟度 論理的推論や厳密さを新しく習得しなければならない
基礎不足(線形代数・集合論) 前提の道具がないと圧倒されやすい
モチベーション・応用の理解 抽象定義が実用と結びつかないと意味不明に感じる

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?