4
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

【windows11】GPU+tensorflow環境をwsl2+dockerで実現する。

Posted at

目的

GPU+tensorflow環境をwsl2+dockerで実現する。なるべくクリーンな環境で試したい。

環境

windows11
wsl2(ubuntu)
NVIDIA GeForce GTX 1050Ti

手順

1. windows11にNVIDIA Driverをインストールする。

僕の場合、勝手にインストールされていた気がします。インストールされていない場合、https://www.nvidia.co.jp/Download/index.aspx?lang=jp でダウンロードできます。
ubuntu上でnvidia-smiを実行し、GPUを認識できていれば成功です。

$ nvidia-smi
Sun Mar 20 11:00:03 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.47.03    Driver Version: 511.65       CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:1C:00.0  On |                  N/A |
| 44%   31C    P0    N/A /  75W |   1744MiB /  4096MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

wsl2はwsl1と違い、本物のlinux kernelを使用しているのでこの時点でlinuxがGPUを認識できていると考えて大丈夫です。

2. dockerをwsl2上にインストールする。

ここからはnvidia公式サイト(https://docs.nvidia.com/cuda/wsl-user-guide/index.html#getting-started-with-cuda-on-wsl) の4.2節を流用しているだけです。
wsl2のターミナル上で以下のコマンドを実行します。docker公式でlinuxへのインストール手順があるのでこれを参考にします。(https://docs.docker.jp/linux/step_one.html)

curl -fsSL https://get.docker.com/ | sh 

成功すると以下のようなログが出力されます。

curl -fsSL https://get.docker.com/ | sh
# Executing docker install script, commit: 93d2499759296ac1f9c510605fef85052a2c32be

WSL DETECTED: We recommend using Docker Desktop for Windows.
Please get Docker Desktop from https://www.docker.com/products/docker-desktop


You may press Ctrl+C now to abort this script.
+ sleep 20
+ sudo -E sh -c apt-get update -qq >/dev/null
[sudo] password for USERNAME:
+ sudo -E sh -c DEBIAN_FRONTEND=noninteractive apt-get install -y -qq apt-transport-https ca-certificates curl >/dev/null
+ sudo -E sh -c curl -fsSL "https://download.docker.com/linux/ubuntu/gpg" | gpg --dearmor --yes -o /usr/share/keyrings/docker-archive-keyring.gpg
+ sudo -E sh -c echo "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu focal stable" > /etc/apt/sources.list.d/docker.list
+ sudo -E sh -c apt-get update -qq >/dev/null
+ sudo -E sh -c DEBIAN_FRONTEND=noninteractive apt-get install -y -qq --no-install-recommends  docker-ce-cli docker-scan-plugin docker-ce >/dev/null
+ version_gte 20.10
+ [ -z  ]
+ return 0
+ sudo -E sh -c DEBIAN_FRONTEND=noninteractive apt-get install -y -qq docker-ce-rootless-extras >/dev/null

================================================================================

To run Docker as a non-privileged user, consider setting up the
Docker daemon in rootless mode for your user:

    dockerd-rootless-setuptool.sh install

Visit https://docs.docker.com/go/rootless/ to learn about rootless mode.


To run the Docker daemon as a fully privileged service, but granting non-root
users access, refer to https://docs.docker.com/go/daemon-access/

WARNING: Access to the remote API on a privileged Docker daemon is equivalent
         to root access on the host. Refer to the 'Docker daemon attack surface'
         documentation for details: https://docs.docker.com/go/attack-surface/

================================================================================

wslなのでdocker desktopをお勧めすると書いてありますが、docker desktopは有償化されてしまったので、無視します。(個人の利用では無料)
dockerとターミナル上に打ち込み、コマンド認識できていればOKです。

3. NVIDIA Container Toolkitをwsl2上にインストールする。

以下のコマンドでtoolkitをインストールします。何をやっているか正直理解できていないですが、公式なので大丈夫でしょう。

distribution=$(. /etc/os-release;echo $ID$VERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

インストールをします。

sudo apt-get update

sudo apt-get install -y nvidia-docker2   

4. 動作確認

dockerがGPUを認識できているか動作確認を行います。
まずdockerを再起動しておきましょう。

sudo service docker stop

sudo service docker start

docker imageをプルしてきて、テストします。

$ sudo docker run --rm --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark
Unable to find image 'nvcr.io/nvidia/k8s/cuda-sample:nbody' locally
nbody: Pulling from nvidia/k8s/cuda-sample
2f94e549220a: Pull complete
8a196a8ba405: Pull complete
d84024e05c66: Pull complete
c6e912b1cab0: Pull complete
2c392aca5e2c: Pull complete
e12411a32402: Pull complete
246511fe8354: Pull complete
8eec16b7bc5c: Pull complete
9917b9983432: Pull complete
Digest: sha256:2a17caedda57b64f02f85f6ffae682ebbfdeadbf401e1c6a4c561f1b12b2257a
Status: Downloaded newer image for nvcr.io/nvidia/k8s/cuda-sample:nbody
Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
        -fullscreen       (run n-body simulation in fullscreen mode)
        -fp64             (use double precision floating point values for simulation)
        -hostmem          (stores simulation data in host memory)
        -benchmark        (run benchmark to measure performance)
        -numbodies=<N>    (number of bodies (>= 1) to run in simulation)
        -device=<d>       (where d=0,1,2.... for the CUDA device to use)
        -numdevices=<i>   (where i=(number of CUDA devices > 0) to use for simulation)
        -compare          (compares simulation results running once on the default GPU and once on the CPU)
        -cpu              (run n-body simulation on the CPU)
        -tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

> Windowed mode
> Simulation data stored in video memory
> Single precision floating point simulation
> 1 Devices used for simulation
GPU Device 0: "Pascal" with compute capability 6.1

> Compute 6.1 CUDA device: [NVIDIA GeForce GTX 1050 Ti]
6144 bodies, total time for 10 iterations: 5.805 ms
= 65.027 billion interactions per second
= 1300.547 single-precision GFLOP/s at 20 flops per interaction

認識できていますね。

5. tensorflowのdocker imageをプルしてテスト

sudo docker run --gpus all -it tensorflow/tensorflow:latest-gpu bash

これでbashに入れます。bash上でpythonを実行して、確認します。

Python 3.8.10 (default, Nov 26 2021, 20:14:08)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>>
>>> from tensorflow.python.client import device_lib
lib.list_local_devices()
>>> device_lib.list_local_devices()
2022-03-20 02:33:15.693566: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2022-03-20 02:33:15.827200: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:922] could not open file to read NUMA node: /sys/bus/pci/devices/0000:1c:00.0/numa_node
Your kernel may have been built without NUMA support.
2022-03-20 02:33:15.834763: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:922] could not open file to read NUMA node: /sys/bus/pci/devices/0000:1c:00.0/numa_node
Your kernel may have been built without NUMA support.
2022-03-20 02:33:15.835051: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:922] could not open file to read NUMA node: /sys/bus/pci/devices/0000:1c:00.0/numa_node
Your kernel may have been built without NUMA support.
2022-03-20 02:33:16.524473: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:922] could not open file to read NUMA node: /sys/bus/pci/devices/0000:1c:00.0/numa_node
Your kernel may have been built without NUMA support.
2022-03-20 02:33:16.524820: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:922] could not open file to read NUMA node: /sys/bus/pci/devices/0000:1c:00.0/numa_node
Your kernel may have been built without NUMA support.
2022-03-20 02:33:16.524865: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1609] Could not identify NUMA node of platform GPU id 0, defaulting to 0.  Your kernel may not have been built with NUMA support.
2022-03-20 02:33:16.525211: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:922] could not open file to read NUMA node: /sys/bus/pci/devices/0000:1c:00.0/numa_node
Your kernel may have been built without NUMA support.
2022-03-20 02:33:16.525316: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /device:GPU:0 with 2752 MB memory:  -> device: 0, name: NVIDIA GeForce GTX 1050 Ti, pci bus id: 0000:1c:00.0, compute capability: 6.1
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 15340632351876512816
xla_global_id: -1
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 2886126798
locality {
  bus_id: 1
  links {
  }
}
incarnation: 10473275661079893773
physical_device_desc: "device: 0, name: NVIDIA GeForce GTX 1050 Ti, pci bus id: 0000:1c:00.0, compute capability: 6.1"
xla_global_id: 416903419
]

GPUを認識できていますね。

まとめ

wsl2を使うと、docker desktopを使わなくてもdockerを使用できます。かなりクリーンな環境でGPUを利用できるので良いと思います。

4
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
4
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?