0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

ジニ不純度

Last updated at Posted at 2022-06-26

定義

決定木のあるノード$t$に対し、ノード内のサンプルが$n$個、ノード内のクラスが$c$個のときを考える。
このノード$t$内で、クラス$i$に属するサンプルの個数を$n_i$とすると、クラス$i$に属するサンプルの割合$p(i|t)$を、
$$ p(i|t) = \frac{n_i}{n} \tag{1} $$
と書く。このとき、ジニ不純度$I_G(t)$の定義は以下。
$$ I_G(t) = 1 - \sum_{i=1}^c {p(i|t)}^2 \tag{2} $$
同じくエントロピー$I_H(t)$の定義は以下。
$$ I_H(t) = -\sum_{i=1}^c p(i|t) \log p(i|t) \tag{3} $$
エントロピーの対数の底はなんでも良いが、ノード内のクラス数$c$にするとエントロピーの最大値が$1$になるのでよく採用される。(後述)

引用
https://qiita.com/Qiita/items/c686397e4a0f4f11683d

tree.png

計算例

上記の画像はtitanicのデータをもとに決定木分析を行った画像。一番上の木の値を使って計算をしてみる。

$$
I_G(t)=1-\left\{\left(\frac{421}{668}\right)^2+\left(\frac{247}{668}\right)^2\right\}\sim 0.466
$$

print(1-(421/668)**2-(247/668)**2)
# 結果
# 0.4660753343612176
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?