Qiita Teams that are logged in
You are not logged in to any team

Log in to Qiita Team
Community
OrganizationEventAdvent CalendarQiitadon (β)
Service
Qiita JobsQiita ZineQiita Blog
4
Help us understand the problem. What is going on with this article?

More than 1 year has passed since last update.

@covao

Power BIで対数スケールを使ってデータを可視化する

はじめに

現在、新型コロナウイルスの感染拡大で、日々の感染者数の推移に注目が集まっています。
指数関数的に増加するデータは、対数スケールを用いると傾向を視覚的に理解しやすくなります。

サンプルデータ

ここでは、J.A.G Japan社 都道府県別新型コロナウイルス感染者数マップのデータを利用します。
Creative Commons「BY-NC 国際4.0」で公開されており、下記サイトにデータに関する説明があります。
https://jag-japan.com/covid19map-readme/
感染者数マップ: https://gis.jag-japan.com/covid19jp/

データの読み込み

ホーム>データを取得>webから、httpアドレスを指定し、csvファイルを読み込みます。
https://dl.dropboxusercontent.com/s/6mztoeb6xf78g5w/COVID-19.csv
(csvファイルをローカルにダウンロードして、「テキスト/csv」から読み込むこともできますが、Webコネクタを使用することで、「最新の情報に更新」で、すぐにデータ更新ができます。)

ダッシュボードの作成

折れ線グラフで全国における1日の感染者数を表示します。
ビジュアルを選択し、フィールドよりドラックアンドドロップで設定します。
軸を確定日、値を通しのカウントに設定します。
image.png
Y軸>スケールの種類をログに設定します。
(今後の増加傾向を掴むため、X軸、Y軸のスケールを自動ではなく、手動で設定しています。)
image.png

メジャーの作成と累計値の表示

csvファイルには累積データが含まれており、そのまま累積数を表示することも可能ですが、凡例に都道府県を設定できるようにするため、累計を算出するメジャーを作成します。
image.png
作成したメジャーで累積数の折れ線グラフも作成します
image.png

凡例に受診都道府県を設定することで、都道府県ごとのプロットも同様に作成できます。
都道府県のように凡例数が多くなると、グラフが読み取りにくくなります。
ラインが"密集"、"密接"、"密着"しすぎないよう、フィルター設定にて、上位10都道府県に限定しています。:smile:
image.png
都道府県ごとの感染者累積数の推移です。:worried:
image.png

さいごに

前回、Power BIでサクっとデータを視覚化するでダッシュボードを作成してみましたが、感染数も一桁増えたため、データーソースを変更し、対数スケールでプロットしてみました。:chart_with_upwards_trend:

4
Help us understand the problem. What is going on with this article?
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
4
Help us understand the problem. What is going on with this article?