0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

AtCoder Beginner Contest 162 参戦記

Last updated at Posted at 2020-04-12

AtCoder Beginner Contest 162 参戦記

ABC162A - Lucky 7

2分で突破. 書くだけ.

N = int(input())

if str(N).count('7') > 0:
    print('Yes')
else:
    print('No')

ABC162C - Sum of gcd of Tuples (Easy)

4分で突破. なぜか間違って先にC問題やってた. ジャッジシステムが詰まってて、オンライン実行が使えなくて時間がかかった. まあ、問題文通りに書くだけなんだけど、TLE になりそうだったので定数倍に手を入れた.

def main():
    from math import gcd

    K = int(input())

    result = 0
    for a in range(1, K + 1):
        for b in range(1, K + 1):
            t = gcd(a, b)
            for c in range(1, K + 1):
                result += gcd(t, c)
    print(result)


main()

ABC162B - FizzBuzz Sum

2分半で突破. Fizz やら Buzz やら FizzBuzz やらのとき以外加算するだけ.

N = int(input())

result = 0
for i in range(1, N + 1):
    if i % 3 == 0 or i % 5 == 0:
        continue
    result += i
print(result)

ABC162D - RGB Triplets

24分で突破. TLE1. N≤4000 だから2重ループなんだろうなと思った. ナイーブにやると3重になるが、累積和できるので特に難しくなかった.

def main():
    N = int(input())
    S = input()

    rcs = [0] * N
    gcs = [0] * N
    bcs = [0] * N

    for i in range(N):
        if S[i] == 'R':
            rcs[i] = 1
        elif S[i] == 'G':
            gcs[i] = 1
        elif S[i] == 'B':
            bcs[i] = 1

    for i in range(1, N):
        rcs[i] += rcs[i - 1]
        gcs[i] += gcs[i - 1]
        bcs[i] += bcs[i - 1]

    result = 0
    for i in range(N):
        if S[i] == 'R':
            for j in range(i + 1, N):
                if S[j] == 'R':
                    continue
                elif S[j] == 'G':
                    result += bcs[N - 1] - bcs[j]
                    t = 2 * j - i
                    if t < N and S[t] == 'B':
                        result -= 1
                elif S[j] == 'B':
                    result += gcs[N - 1] - gcs[j]
                    t = 2 * j - i
                    if t < N and S[t] == 'G':
                        result -= 1
        elif S[i] == 'G':
            for j in range(i + 1, N):
                if S[j] == 'G':
                    continue
                elif S[j] == 'R':
                    result += bcs[N - 1] - bcs[j]
                    t = 2 * j - i
                    if t < N and S[t] == 'B':
                        result -= 1
                elif S[j] == 'B':
                    result += rcs[N - 1] - rcs[j]
                    t = 2 * j - i
                    if t < N and S[t] == 'R':
                        result -= 1
        elif S[i] == 'B':
            for j in range(i + 1, N):
                if S[j] == 'B':
                    continue
                elif S[j] == 'R':
                    result += gcs[N - 1] - gcs[j]
                    t = 2 * j - i
                    if t < N and S[t] == 'G':
                        result -= 1
                elif S[j] == 'G':
                    result += rcs[N - 1] - rcs[j]
                    t = 2 * j - i
                    if t < N and S[t] == 'R':
                        result -= 1
    print(result)


main()

ABC162E - Sum of gcd of Tuples (Hard)

突破できず. 解けると思ったんだけどなあ. 悔しい.

追記: f(k, n) を 1 以上 k 以下の整数からなる長さ n の数列 {A1,...,An} で gcd(A1,...,An) が 1 の個数とすると求める答えは ∑ i = 1..K f(floor(K / i), N) * i となる.

N, K = map(int, input().split())

MOD = 10 ** 9 + 7

cache = {}
def f(k, n):
    if k == 1:
        return 1
    if k in cache:
        return cache[k]
    result = pow(k, n, MOD)
    for i in range(2, k + 1):
        result -= f(k // i, n)
        result %= MOD
    cache[k] = result
    return result


result = 0
for i in range(1, K + 1):
    result += f(K // i, N) * i
    result %= MOD
print(result)

解説 PDF の想定解はこっちかな.

N, K = map(int, input().split())

MOD = 10 ** 9 + 7

c = [0] * (K + 1)
for i in range(K, 0, -1):
    t = pow(K // i, N, MOD)
    for j in range(2, K // i + 1):
        t -= c[i * j]
        t %= MOD
    c[i] = t

result = 0
for i in range(1, K + 1):
    result += c[K // i] * i
    result %= MOD
print(result)
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?