0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

AtCoder Beginner Contest 252 参戦記

Last updated at Posted at 2022-05-21

AtCoder Beginner Contest 252 参戦記

ABC252A - ASCII code

1分で突破. 書くだけ.

N = int(input())

print(chr(N))

ABC252B - Takahashi's Failure

4分半で突破. 書くだけ.

N, K = map(int, input().split())
A = list(map(int, input().split()))
B = list(map(int, input().split()))

x = max(A)
if len(set(B) & set(i + 1 for i in range(N) if A[i] == x)) > 0:
    print('Yes')
else:
    print('No')

ABC252C - Slot Strategy

35分で突破. 「ここで、$S_i$​ は $0, 1, \ldots , 9$ がちょうど $1$ 回ずつ現れる長さ $10$ の文字列です。」を読み飛ばして、揃わない数字もある難しい問題に勝手にして自滅. シミュレートを heapq で高速化して解いたけど、高速化しなくても問題なかった模様.

from heapq import heappush, heappop

N = int(input())
S = [[int(c) for c in input()] for _ in range(N)]

result = 10 ** 15
for i in range(10):
    q = []
    for j in range(N):
        heappush(q, S[j].index(i))
    used = set()
    while len(q) != 0:
        x = heappop(q)
        if x in used:
            heappush(q, x + 10)
        else:
            used.add(x)
            t = x
    result = min(result, t)
print(result)

冷静になって考えればシミュレートする必要もなくダブった分だけ10を積み増せばいいと分かる.

N = int(input())
S = [[int(c) for c in input()] for _ in range(N)]

result = 10 ** 15
for i in range(10):
    t = {}
    for j in range(N):
        x = S[j].index(i)
        t.setdefault(x, 0)
        t[x] += 1
    result = min(result, max(k + (t[k] - 1) * 10 for k in t))
print(result)

ABC252D - Distinct Trio

7分半で突破. 過去に似たような問題を解いたような. 組み合わせの問題なのでソートしても大丈夫. ソートさえすれば、真ん中に対し、左右がどこまで移動できるかがにぶたんで $O(\log N)$ で取れるので、$O(N \log N )$ で解ける.

from bisect import bisect_left, bisect_right

N, *A = map(int, open(0).read().split())

A.sort()

result = 0
for j in range(1, N - 1):
    i = bisect_right(A, A[j] - 1)
    k = bisect_left(A, A[j] + 1)
    result += i * (N - k)
print(result)
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?