0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

ベクトル解析-ベクトルの掛算

Last updated at Posted at 2018-08-22

ナブラの掛算

戻る

スカラー場の勾配

\begin{align}
 &スカラー場 \phi(x, y, x) に \nabla を作用させると\\
 &\nabla\phi = grad \phi = \left( e_x \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z} \right) \phi = \left( e_x \frac{\partial\phi}{\partial x} + e_y \frac{\partial\phi}{\partial y} + e_z \frac{\partial\phi}{\partial z} \right)
\end{align}

ベクトル場の発散

\begin{align}
 &ベクトル場 \boldsymbol{A}(x, y, z) = (A_xe_x+A_ye_y + A_ze_z) と \nabla の内積をとると\\
 &\nabla\cdot\boldsymbol{A} = div \boldsymbol{A} = \left( e_x \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z} \right) \cdot (A_xe_x+A_ye_y + A_ze_z)\\
  & = \left( \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}\right)\\
\end{align}

ベクトル場の回転

\begin{align}
 &ベクトル場 \boldsymbol{A}(x, y, z) = (A_xe_x+A_ye_y + A_ze_z) と \nabla の外積をとると\\
 &\nabla\times\boldsymbol{A} = rot \boldsymbol{A} = \left( e_x \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z} \right) \times (A_xe_x+A_ye_y + A_ze_z)\\
  & = \left( e_x(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}) + e_y(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}) + e_z(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}) \right)\\
\end{align}

場の関数のラプラシアン

\begin{align}
 &ナブラどうしの内積をとると\\
 &\nabla \cdot \nabla = \left( e_x \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z} \right) \cdot \left( e_x \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z} \right)\\
 & = \frac{\partial^2}{{\partial x}^2} + \frac{\partial^2}{{\partial y}^2} + \frac{\partial^2}{{\partial z}^2}\\
\end{align}

ベクトル場の勾配

\begin{align}
 &ベクトル場 \boldsymbol{A}(x, y, z) = (A_xe_x+A_ye_y + A_ze_z)とのテンソル積をとると\\
 &\nabla \otimes \boldsymbol{A} = grad \boldsymbol{A} = \left( e_x \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z} \right) \otimes (A_xe_x+A_ye_y + A_ze_z)\\
 & = e_x \otimes e_x \frac{\partial A_x}{\partial x} + e_x \otimes e_y \frac{\partial A_y}{\partial x} + e_x \otimes e_z \frac{\partial A_z}{\partial x}\\
 & + e_y \otimes e_x \frac{\partial A_x}{\partial y} + e_y \otimes e_y \frac{\partial A_y}{\partial y} + e_y \otimes e_z \frac{\partial A_z}{\partial y}\\
 & + e_z \otimes e_x \frac{\partial A_x}{\partial z} + e_z \otimes e_y \frac{\partial A_y}{\partial z} + e_z \otimes e_z \frac{\partial A_z}{\partial z}\\
 &\\
 & 転置テンソル\\
 & {}^t(\nabla \otimes \boldsymbol{A}) = {}^t(grad \boldsymbol{A})\\
 & = e_x \otimes e_x \frac{\partial A_x}{\partial x} + e_x \otimes e_y \frac{\partial A_x}{\partial y} + e_x \otimes e_z \frac{\partial A_x}{\partial z}\\
 & + e_y \otimes e_x \frac{\partial A_y}{\partial x} + e_y \otimes e_y \frac{\partial A_y}{\partial y} + e_y \otimes e_z \frac{\partial A_y}{\partial z}\\
 & + e_z \otimes e_x \frac{\partial A_z}{\partial x} + e_z \otimes e_y \frac{\partial A_z}{\partial y} + e_z \otimes e_z \frac{\partial A_z}{\partial z}\\
\end{align}

テンソル場の発散

\begin{align}
 && テンソル場 \boldsymbol{G}(x, y, z) &= G_{xx}e_x \otimes e_x + G_{xy}e_x \otimes e_y + G_{xz}e_x \otimes e_z\\
 && &+ G_{yx}e_y \otimes e_x + G_{yy}e_y \otimes e_y + G_{yz}e_y \otimes e_z\\
 && &+ G_{zx}e_z \otimes e_x + G_{zy}e_z \otimes e_y + G_{zz}e_z \otimes e_z\\
 && との内積をとると\\
 && \nabla \cdot \boldsymbol{G} &= div \boldsymbol{G} = \left( e_x \frac{\partial}{\partial x} + e_y \frac{\partial}{\partial y} + e_z \frac{\partial}{\partial z} \right) \cdot
    (G_{xx}e_x \otimes e_x + G_{xy}e_x \otimes e_y + G_{xz}e_x \otimes e_z + G_{yx}e_y \otimes e_x + G_{yy}e_y \otimes e_y + G_{yz}e_y \otimes e_z + G_{zx}e_z \otimes e_x + G_{zy}e_z \otimes e_y + G_{zz}e_z \otimes e_z )\\
 && &= e_x\frac{\partial G_{xx}}{\partial x} + e_y\frac{\partial G_{xy}}{\partial x} + e_z\frac{\partial G_{xz}}{\partial x}\\
 && &+ e_x\frac{\partial G_{yx}}{\partial y} + e_y\frac{\partial G_{yy}}{\partial y} + e_z\frac{\partial G_{yz}}{\partial y}\\
 && &+ e_x\frac{\partial G_{zx}}{\partial z} + e_y\frac{\partial G_{zy}}{\partial z} + e_z\frac{\partial G_{zz}}{\partial z}\\
 && &= e_x \left( \frac{\partial G_{xx}}{\partial x} + \frac{\partial G_{yx}}{\partial y} + \frac{\partial G_{zx}}{\partial x} \right)\\
 && &+ e_y \left( \frac{\partial G_{xy}}{\partial x} + \frac{\partial G_{yy}}{\partial y} + \frac{\partial G_{zy}}{\partial x} \right)\\
 && &+ e_z \left( \frac{\partial G_{xz}}{\partial x} + \frac{\partial G_{yz}}{\partial y} + \frac{\partial G_{zz}}{\partial x} \right)\\
\end{align}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?