0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

数学-三角関数-和積の公式の導出

Last updated at Posted at 2024-03-21

和積の公式の導出

戻る

和積の公式

x + y = a \\
x - y = b \\
として、x, y を a,b で表すと \\
x = \frac{a + b}{2} \\
y = \frac{a - b}{2} \\

加法定理より

\\\
\begin{array}{ll}

\sin(x + y) = \sin x \cos y + \cos x \sin y \\
\sin(x - y) = \sin x \cos y - \cos x \sin y \\
\\
\\
両辺を足すと、\\
\sin(x + y) + \sin(x - y) = 2 \sin x \cos y \\
上記の関係から、\\
\sin a + \sin b = 2 \sin \frac{a + b}{2} \cos \frac{a - b}{2} \\
\therefore \sin x + \sin y = 2 \sin \frac{x + y}{2} \cos \frac{x - y}{2} \\
\\
両辺を引くと、\\
\sin(x + y) - \sin(x - y) = 2 \cos x \sin y \\
\therefore \sin x - \sin y = 2 \cos \frac{x + y}{2} \sin \frac{x - y}{2} \\
\\
\\
同様に、\\
\cos(x + y) = \cos x \cos y - \sin x \sin y \\
\cos(x - y) = \cos x \cos y + \sin x \sin y \\
\\
\\
両辺を足すと、\\
\cos(x + y) + \cos(x - y) = 2 \cos x \cos y \\
\therefore \cos x + \cos y = 2 \cos \frac{x + y}{2} \cos \frac{x - y}{2} \\
\\
両辺を引くと、\\
\cos(x + y) - \cos(x - y) = -2 \sin x \sin y \\
\therefore \cos x + \cos y = -2 \sin \frac{x + y}{2} \sin \frac{x - y}{2} (マイナスに注意)\\

\end{array}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?